CUTLAS项目中make_fragment_like与make_tensor_like函数解析
在NVIDIA CUTLASS项目中,make_fragment_like和make_tensor_like是两个用于创建张量的重要函数,它们在张量计算和内存布局处理中扮演着关键角色。本文将深入解析这两个函数的区别、实现原理以及适用场景。
函数基本功能
这两个函数的核心功能都是基于给定的参考张量创建一个新的张量,保持相同的形状和尽可能相似的布局。它们的典型使用场景是在GPU计算中为寄存器分配内存空间。
make_tensor_like会完全复制参考张量的布局模式,包括形状和步长(stride)顺序。而make_fragment_like则在保持整体形状的同时,对第0模式(mode-0)进行了特殊处理,使其采用LayoutLeft布局。
LayoutLeft布局详解
LayoutLeft是CUTLASS中的一种"广义列优先"的步长顺序。在这种布局下,内存访问模式更倾向于列优先,这对于后续的矩阵乘法原子操作(MMA_Atoms)或拷贝原子操作(Copy_Atoms)特别有利。
举例说明:
Layout a = make_layout(make_shape(3,4,2), LayoutLeft{});
// 结果布局为 (3,4,2):(_1,3,12)
实际应用对比
通过一个具体例子可以清晰看到两者的区别:
// 创建一个复杂的参考布局
Layout r = Layout<Shape<Shape<_2,_2>,_4,_2>, Stride<Stride<_16,_7>,_128,_1>>{};  
Tensor ref = make_tensor((float*)nullptr, r); // ((_2,_2),_4,_2):((_16,_7),_128,_1)
// 使用make_tensor_like创建
Tensor x = make_tensor_like(ref);      // ((_2,_2),_4,_2):((_4,_2),_8,_1)
// 使用make_fragment_like创建
Tensor y = make_fragment_like(ref);    // ((_2,_2),_4,_2):((_1,_2),_8,_4)
从输出可以看出,make_fragment_like确保第0模式的元素在内存中是连续存储的(步长为1),这种布局优化使得数据更适合后续的矩阵运算或数据拷贝操作。
设计考量与应用场景
make_fragment_like的特殊设计主要基于以下考虑:
- 计算效率:第0模式通常用于MMA_Atoms或Copy_Atoms操作,连续的内存布局可以提高内存访问效率
 - 硬件适配:现代GPU对连续内存访问有更好的优化,特别是对于小规模的数据块
 - API一致性:保持与CUDA核心计算模式的兼容性
 
相比之下,make_tensor_like提供了更"忠实"的布局复制,适用于需要精确控制内存布局的场景。
总结
理解这两个函数的区别对于高效使用CUTLASS库至关重要。在需要为后续矩阵运算准备数据时,make_fragment_like通常是更好的选择,因为它优化了关键维度的内存布局。而当需要精确复制原始张量布局时,则应使用make_tensor_like。这种精细的内存布局控制正是CUTLASS能够实现高性能矩阵计算的关键因素之一。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00