CUTLAS项目中make_fragment_like与make_tensor_like函数解析
在NVIDIA CUTLASS项目中,make_fragment_like
和make_tensor_like
是两个用于创建张量的重要函数,它们在张量计算和内存布局处理中扮演着关键角色。本文将深入解析这两个函数的区别、实现原理以及适用场景。
函数基本功能
这两个函数的核心功能都是基于给定的参考张量创建一个新的张量,保持相同的形状和尽可能相似的布局。它们的典型使用场景是在GPU计算中为寄存器分配内存空间。
make_tensor_like
会完全复制参考张量的布局模式,包括形状和步长(stride)顺序。而make_fragment_like
则在保持整体形状的同时,对第0模式(mode-0)进行了特殊处理,使其采用LayoutLeft
布局。
LayoutLeft布局详解
LayoutLeft
是CUTLASS中的一种"广义列优先"的步长顺序。在这种布局下,内存访问模式更倾向于列优先,这对于后续的矩阵乘法原子操作(MMA_Atoms)或拷贝原子操作(Copy_Atoms)特别有利。
举例说明:
Layout a = make_layout(make_shape(3,4,2), LayoutLeft{});
// 结果布局为 (3,4,2):(_1,3,12)
实际应用对比
通过一个具体例子可以清晰看到两者的区别:
// 创建一个复杂的参考布局
Layout r = Layout<Shape<Shape<_2,_2>,_4,_2>, Stride<Stride<_16,_7>,_128,_1>>{};
Tensor ref = make_tensor((float*)nullptr, r); // ((_2,_2),_4,_2):((_16,_7),_128,_1)
// 使用make_tensor_like创建
Tensor x = make_tensor_like(ref); // ((_2,_2),_4,_2):((_4,_2),_8,_1)
// 使用make_fragment_like创建
Tensor y = make_fragment_like(ref); // ((_2,_2),_4,_2):((_1,_2),_8,_4)
从输出可以看出,make_fragment_like
确保第0模式的元素在内存中是连续存储的(步长为1),这种布局优化使得数据更适合后续的矩阵运算或数据拷贝操作。
设计考量与应用场景
make_fragment_like
的特殊设计主要基于以下考虑:
- 计算效率:第0模式通常用于MMA_Atoms或Copy_Atoms操作,连续的内存布局可以提高内存访问效率
- 硬件适配:现代GPU对连续内存访问有更好的优化,特别是对于小规模的数据块
- API一致性:保持与CUDA核心计算模式的兼容性
相比之下,make_tensor_like
提供了更"忠实"的布局复制,适用于需要精确控制内存布局的场景。
总结
理解这两个函数的区别对于高效使用CUTLASS库至关重要。在需要为后续矩阵运算准备数据时,make_fragment_like
通常是更好的选择,因为它优化了关键维度的内存布局。而当需要精确复制原始张量布局时,则应使用make_tensor_like
。这种精细的内存布局控制正是CUTLASS能够实现高性能矩阵计算的关键因素之一。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









