CUTLAS项目中make_fragment_like与make_tensor_like函数解析
在NVIDIA CUTLASS项目中,make_fragment_like和make_tensor_like是两个用于创建张量的重要函数,它们在张量计算和内存布局处理中扮演着关键角色。本文将深入解析这两个函数的区别、实现原理以及适用场景。
函数基本功能
这两个函数的核心功能都是基于给定的参考张量创建一个新的张量,保持相同的形状和尽可能相似的布局。它们的典型使用场景是在GPU计算中为寄存器分配内存空间。
make_tensor_like会完全复制参考张量的布局模式,包括形状和步长(stride)顺序。而make_fragment_like则在保持整体形状的同时,对第0模式(mode-0)进行了特殊处理,使其采用LayoutLeft布局。
LayoutLeft布局详解
LayoutLeft是CUTLASS中的一种"广义列优先"的步长顺序。在这种布局下,内存访问模式更倾向于列优先,这对于后续的矩阵乘法原子操作(MMA_Atoms)或拷贝原子操作(Copy_Atoms)特别有利。
举例说明:
Layout a = make_layout(make_shape(3,4,2), LayoutLeft{});
// 结果布局为 (3,4,2):(_1,3,12)
实际应用对比
通过一个具体例子可以清晰看到两者的区别:
// 创建一个复杂的参考布局
Layout r = Layout<Shape<Shape<_2,_2>,_4,_2>, Stride<Stride<_16,_7>,_128,_1>>{};
Tensor ref = make_tensor((float*)nullptr, r); // ((_2,_2),_4,_2):((_16,_7),_128,_1)
// 使用make_tensor_like创建
Tensor x = make_tensor_like(ref); // ((_2,_2),_4,_2):((_4,_2),_8,_1)
// 使用make_fragment_like创建
Tensor y = make_fragment_like(ref); // ((_2,_2),_4,_2):((_1,_2),_8,_4)
从输出可以看出,make_fragment_like确保第0模式的元素在内存中是连续存储的(步长为1),这种布局优化使得数据更适合后续的矩阵运算或数据拷贝操作。
设计考量与应用场景
make_fragment_like的特殊设计主要基于以下考虑:
- 计算效率:第0模式通常用于MMA_Atoms或Copy_Atoms操作,连续的内存布局可以提高内存访问效率
- 硬件适配:现代GPU对连续内存访问有更好的优化,特别是对于小规模的数据块
- API一致性:保持与CUDA核心计算模式的兼容性
相比之下,make_tensor_like提供了更"忠实"的布局复制,适用于需要精确控制内存布局的场景。
总结
理解这两个函数的区别对于高效使用CUTLASS库至关重要。在需要为后续矩阵运算准备数据时,make_fragment_like通常是更好的选择,因为它优化了关键维度的内存布局。而当需要精确复制原始张量布局时,则应使用make_tensor_like。这种精细的内存布局控制正是CUTLASS能够实现高性能矩阵计算的关键因素之一。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00