CUTLAS项目中make_fragment_like与make_tensor_like函数解析
在NVIDIA CUTLASS项目中,make_fragment_like
和make_tensor_like
是两个用于创建张量的重要函数,它们在张量计算和内存布局处理中扮演着关键角色。本文将深入解析这两个函数的区别、实现原理以及适用场景。
函数基本功能
这两个函数的核心功能都是基于给定的参考张量创建一个新的张量,保持相同的形状和尽可能相似的布局。它们的典型使用场景是在GPU计算中为寄存器分配内存空间。
make_tensor_like
会完全复制参考张量的布局模式,包括形状和步长(stride)顺序。而make_fragment_like
则在保持整体形状的同时,对第0模式(mode-0)进行了特殊处理,使其采用LayoutLeft
布局。
LayoutLeft布局详解
LayoutLeft
是CUTLASS中的一种"广义列优先"的步长顺序。在这种布局下,内存访问模式更倾向于列优先,这对于后续的矩阵乘法原子操作(MMA_Atoms)或拷贝原子操作(Copy_Atoms)特别有利。
举例说明:
Layout a = make_layout(make_shape(3,4,2), LayoutLeft{});
// 结果布局为 (3,4,2):(_1,3,12)
实际应用对比
通过一个具体例子可以清晰看到两者的区别:
// 创建一个复杂的参考布局
Layout r = Layout<Shape<Shape<_2,_2>,_4,_2>, Stride<Stride<_16,_7>,_128,_1>>{};
Tensor ref = make_tensor((float*)nullptr, r); // ((_2,_2),_4,_2):((_16,_7),_128,_1)
// 使用make_tensor_like创建
Tensor x = make_tensor_like(ref); // ((_2,_2),_4,_2):((_4,_2),_8,_1)
// 使用make_fragment_like创建
Tensor y = make_fragment_like(ref); // ((_2,_2),_4,_2):((_1,_2),_8,_4)
从输出可以看出,make_fragment_like
确保第0模式的元素在内存中是连续存储的(步长为1),这种布局优化使得数据更适合后续的矩阵运算或数据拷贝操作。
设计考量与应用场景
make_fragment_like
的特殊设计主要基于以下考虑:
- 计算效率:第0模式通常用于MMA_Atoms或Copy_Atoms操作,连续的内存布局可以提高内存访问效率
- 硬件适配:现代GPU对连续内存访问有更好的优化,特别是对于小规模的数据块
- API一致性:保持与CUDA核心计算模式的兼容性
相比之下,make_tensor_like
提供了更"忠实"的布局复制,适用于需要精确控制内存布局的场景。
总结
理解这两个函数的区别对于高效使用CUTLASS库至关重要。在需要为后续矩阵运算准备数据时,make_fragment_like
通常是更好的选择,因为它优化了关键维度的内存布局。而当需要精确复制原始张量布局时,则应使用make_tensor_like
。这种精细的内存布局控制正是CUTLASS能够实现高性能矩阵计算的关键因素之一。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









