YugabyteDB中TServer崩溃导致事务丢失问题分析与修复
问题背景
在YugabyteDB分布式数据库中,我们发现了一个可能导致数据不一致的关键问题。该问题最初是在CDC(变更数据捕获)与数据库克隆功能的联合测试中被发现的。测试场景中,当源数据库执行克隆操作后,CDC数据复制会出现异常,表现为源数据库和克隆数据库之间的行计数不一致且不断波动。
问题现象
在典型的测试流程中:
- 创建包含2个表的源数据库
- 在源数据库上启用CDC并部署gRPC连接器
- 克隆原始数据库
- 在克隆数据库上启用CDC并部署连接器
- 验证CDC复制正确性
测试过程中观察到源数据库的行计数出现异常波动,例如:
- 初始状态:源库行数113,659,同步正常
- 异常开始:源库行数从174,113变为154,691
- 后续发展:行数持续波动(149,448→145,923→150,355→139,732)
根本原因分析
经过深入调查,发现问题根源在于YugabyteDB的写入和刷盘机制存在缺陷。具体表现为:
-
操作顺序问题:当处理SNAPSHOT_OP(特别是删除操作)时,系统会先更新RocksDB清单文件中的flushed frontier(通过Tablet::ModifyFlushedFrontier),然后再将之前的写操作真正刷盘到SST文件。
-
崩溃恢复缺陷:如果在更新flushed frontier后、实际数据刷盘前发生TServer崩溃,重启后的tablet bootstrap过程会错误地认为这些数据已经持久化,导致部分已提交但未刷盘的事务丢失。
-
CDC影响:这种数据丢失会导致CDC流出现不一致,表现为行计数异常波动,因为部分已复制的数据在崩溃恢复后被丢弃。
技术细节
问题的核心在于YugabyteDB的持久化机制:
-
RocksDB集成:YugabyteDB使用RocksDB作为存储引擎,数据首先写入内存表(MemTable),然后异步刷盘到SST文件。
-
Frontier机制:flushed frontier记录了已持久化数据的前沿位置,用于崩溃恢复时确定需要重放的日志范围。
-
错误时序:当前实现在更新flushed frontier时没有确保相关数据已经刷盘,导致持久化状态与实际数据不一致。
解决方案
修复方案着重于保证数据持久化的原子性和正确顺序:
-
强制刷盘:修改Tablet::ModifyFlushedFrontier实现,在更新flushed frontier前,先同步刷盘常规DB和intents DB。
-
严格顺序:确保只有数据确实写入磁盘后,才更新清单文件中的flushed frontier标记。
-
崩溃安全:这种修改保证了即使TServer在更新过程中崩溃,也不会出现数据丢失,因为要么全部持久化,要么全部不持久化。
影响范围与修复版本
该问题是一个长期存在的潜在缺陷,影响多个YugabyteDB版本。修复方案已向后移植到所有受支持的稳定版本,包括2024.1、2024.2和2025.1等主要发布线。
最佳实践建议
对于使用YugabyteDB的生产环境,特别是依赖CDC或数据库克隆功能的用户,建议:
- 及时升级到包含此修复的版本
- 在关键业务场景中增加数据一致性校验
- 监控CDC延迟和一致性指标
- 考虑在重要操作前后执行手动刷盘(如通过admin命令)
该修复显著提高了YugabyteDB在崩溃恢复场景下的数据可靠性,确保了分布式事务的完整性和一致性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









