MLRun v1.10.0-rc6 版本深度解析:模型监控与数据存储的全面升级
MLRun 是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。本次发布的 v1.10.0-rc6 版本带来了多项重要更新,特别是在模型监控和数据存储方面的功能增强。
核心功能增强
模型监控功能全面升级
本次版本在模型监控方面进行了显著改进,新增了对 TDEngine 数据库的支持。TDEngine 是一个高性能、分布式的时序数据库,特别适合处理模型监控产生的大量时序数据。通过集成 TDEngine,MLRun 现在能够更高效地存储和查询函数摘要统计信息,为大规模模型监控场景提供了更好的支持。
同时,版本引入了全新的"function-summaries" API,这一接口为开发者提供了更便捷的方式来获取和分析模型监控的摘要数据。这一改进使得监控数据的访问更加标准化和规范化,有助于构建更复杂的监控分析流程。
数据存储连接器的优化
在数据存储方面,v1.10.0-rc6 版本对多个连接器进行了重要改进:
-
TDEngine 连接器线程安全:通过使 TDEngine 连接器线程安全,解决了多线程环境下可能出现的并发访问问题,提高了系统的稳定性和可靠性。
-
S3 存储配置强化:明确将 bucket 作为 S3 配置文件的必填项,同时修复了当 bucket 作为 URL 一部分时的处理逻辑。这些改进使得 S3 存储的配置更加清晰和健壮,减少了配置错误的风险。
重要变更与弃用
本次版本继续推进 MLRun 的现代化进程,移除了一些过时的功能:
-
移除了 RemoteRuntime.deploy 方法中的 auth_info 参数,简化了远程部署的接口设计。
-
废弃了 FunctionSpec.clone_target_dir 属性,这是代码清理和简化的一部分。
-
开始逐步弃用 mlrun/ml-base 镜像,标志着 MLRun 向更现代化的基础镜像过渡。
项目管理与工具链改进
在项目管理方面,v1.10.0-rc6 版本增加了按类别统计项目中的工件数量功能,为项目概览提供了更丰富的信息。同时,对 Python 3.11 的正式支持也被添加到包分类器中,确保了与新版本 Python 的兼容性。
在开发工具链方面,版本更新了多个依赖项,包括升级 golang.org/x/sync 和 google.golang.org/grpc 等关键组件,提升了系统的稳定性和安全性。
总结
MLRun v1.10.0-rc6 版本在模型监控和数据存储方面做出了重要改进,同时持续推进代码现代化和简化工作。这些变化不仅提升了系统的功能和性能,也为开发者提供了更好的使用体验。作为预发布版本,它为用户提供了评估新功能的机会,并为即将到来的稳定版本奠定了基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00