MLRun v1.10.0-rc6 版本深度解析:模型监控与数据存储的全面升级
MLRun 是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。本次发布的 v1.10.0-rc6 版本带来了多项重要更新,特别是在模型监控和数据存储方面的功能增强。
核心功能增强
模型监控功能全面升级
本次版本在模型监控方面进行了显著改进,新增了对 TDEngine 数据库的支持。TDEngine 是一个高性能、分布式的时序数据库,特别适合处理模型监控产生的大量时序数据。通过集成 TDEngine,MLRun 现在能够更高效地存储和查询函数摘要统计信息,为大规模模型监控场景提供了更好的支持。
同时,版本引入了全新的"function-summaries" API,这一接口为开发者提供了更便捷的方式来获取和分析模型监控的摘要数据。这一改进使得监控数据的访问更加标准化和规范化,有助于构建更复杂的监控分析流程。
数据存储连接器的优化
在数据存储方面,v1.10.0-rc6 版本对多个连接器进行了重要改进:
-
TDEngine 连接器线程安全:通过使 TDEngine 连接器线程安全,解决了多线程环境下可能出现的并发访问问题,提高了系统的稳定性和可靠性。
-
S3 存储配置强化:明确将 bucket 作为 S3 配置文件的必填项,同时修复了当 bucket 作为 URL 一部分时的处理逻辑。这些改进使得 S3 存储的配置更加清晰和健壮,减少了配置错误的风险。
重要变更与弃用
本次版本继续推进 MLRun 的现代化进程,移除了一些过时的功能:
-
移除了 RemoteRuntime.deploy 方法中的 auth_info 参数,简化了远程部署的接口设计。
-
废弃了 FunctionSpec.clone_target_dir 属性,这是代码清理和简化的一部分。
-
开始逐步弃用 mlrun/ml-base 镜像,标志着 MLRun 向更现代化的基础镜像过渡。
项目管理与工具链改进
在项目管理方面,v1.10.0-rc6 版本增加了按类别统计项目中的工件数量功能,为项目概览提供了更丰富的信息。同时,对 Python 3.11 的正式支持也被添加到包分类器中,确保了与新版本 Python 的兼容性。
在开发工具链方面,版本更新了多个依赖项,包括升级 golang.org/x/sync 和 google.golang.org/grpc 等关键组件,提升了系统的稳定性和安全性。
总结
MLRun v1.10.0-rc6 版本在模型监控和数据存储方面做出了重要改进,同时持续推进代码现代化和简化工作。这些变化不仅提升了系统的功能和性能,也为开发者提供了更好的使用体验。作为预发布版本,它为用户提供了评估新功能的机会,并为即将到来的稳定版本奠定了基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00