AKShare 可转债比价表接口优化解析
2025-05-20 09:09:10作者:俞予舒Fleming
在金融数据获取领域,AKShare 作为一款优秀的开源工具,为量化投资者和数据分析师提供了便捷的数据接口。本文针对 AKShare 中获取可转债比价表数据的接口进行了深入分析和优化。
问题背景
原接口 bond_cov_comparison() 设计用于从东方财富网获取可转债比价数据,但存在一个明显的局限性:每次调用仅返回200条数据记录。对于需要完整数据集的研究者而言,这显然不能满足需求。
技术分析
通过分析东方财富网的API接口,我们发现其采用了分页机制。原始实现仅获取了第一页数据,而完整数据需要遍历所有分页。以下是关键的技术要点:
-
分页参数解析:
pn参数表示当前页码pz参数表示每页记录数(固定为200)total字段表示总记录数
-
数据获取流程:
- 首先获取第一页数据并解析总记录数
- 计算总页数:
总页数 = ceil(总记录数/每页记录数) - 使用循环依次获取后续页面的数据
-
性能优化:
- 添加了进度条显示(tqdm)
- 设置了合理的请求超时时间(15秒)
- 采用列表暂存分页数据,最后统一合并
优化实现
优化后的实现主要改进了以下几个方面:
def bond_cov_comparison() -> pd.DataFrame:
url = "https://16.push2.eastmoney.com/api/qt/clist/get"
params = {
"pn": "1",
"pz": "200",
# 其他必要参数...
}
# 获取第一页数据并计算总页数
r = requests.get(url, params=params)
data_json = r.json()
total_page = math.ceil(data_json["data"]["total"] / 200)
# 收集所有分页数据
temp_list = []
temp_list.append(pd.DataFrame(data_json["data"]["diff"]))
# 使用进度条获取剩余页数据
tqdm = get_tqdm()
for page in tqdm(range(2, total_page + 1), leave=False):
params.update({"pn": page})
r = requests.get(url, params=params, timeout=15)
data_json = r.json()
inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
temp_list.append(inner_temp_df)
# 合并所有数据并处理列名
temp_df = pd.concat(temp_list, ignore_index=True)
# 列名处理和数据筛选...
return temp_df
数据字段说明
优化后的接口返回以下关键字段:
-
转债信息:
- 转债代码、名称
- 最新价和涨跌幅
- 上市日期和申购日期
-
正股信息:
- 正股代码、名称
- 最新价和涨跌幅
-
转股相关指标:
- 转股价和转股价值
- 转股溢价率和纯债溢价率
- 回售触发价和强赎触发价
-
其他关键数据:
- 到期赎回价
- 纯债价值
- 开始转股日
应用价值
完整的可转债比价数据对于以下分析场景尤为重要:
- 套利策略开发:通过完整的转股溢价率数据寻找套利机会
- 风险评估:分析所有可转债的强赎和回售条款
- 市场监控:全面把握可转债市场的整体表现
- 组合构建:基于完整数据集构建可转债投资组合
总结
通过对 AKShare 可转债比价表接口的优化,我们实现了完整数据集的获取能力。这一改进不仅解决了数据不全的问题,还为量化研究和投资分析提供了更可靠的数据基础。这种分页处理的方法也可以应用于其他类似接口的优化中,具有很好的借鉴意义。
对于金融数据开发者而言,理解并掌握这种分页数据获取技术,能够显著提升数据采集的完整性和可靠性,为后续的分析工作打下坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143