Great Expectations 1.4.0版本发布:数据质量监控工具的重大更新
Great Expectations是一个开源的数据质量监控工具,它帮助数据工程师和分析师定义、记录和验证数据质量预期。通过提供一套完整的测试框架,Great Expectations能够确保数据在管道中的每个阶段都符合预期,从而减少数据错误和异常。
核心功能增强
新增列采样值指标
1.4.0版本引入了ColumnSampleValues
指标,这是一个重要的数据质量监控功能。该指标允许用户从数据列中随机采样值,这对于理解数据分布和识别异常值特别有用。在实际应用中,数据团队可以通过这个功能快速检查数据样本,而不需要处理整个数据集,大大提高了数据验证的效率。
正则表达式匹配指标扩展
新版本增加了两个与正则表达式相关的重要指标:
ColumnValuesMatchRegexCount
:计算列中匹配指定正则表达式的值数量ColumnValuesMatchRegexValues
:返回列中匹配指定正则表达式的具体值
这些功能扩展了Great Expectations在数据验证方面的能力,特别是在处理文本数据时,可以更精确地验证数据格式和内容。例如,可以验证电子邮件地址、电话号码或其他具有特定格式的数据是否符合预期模式。
数据源支持扩展
1.4.0版本显著增强了对Redshift数据仓库的支持:
- 将Redshift添加到支持的数据库列表中
- 新增了
gx-redshift
额外依赖包,简化了Redshift集成 - 完善了Redshift相关的测试套件
这些改进使得使用Amazon Redshift作为数据源的用户能够更顺畅地集成Great Expectations到他们的数据工作流中。
问题修复与稳定性提升
本次发布修复了一个重要的JSON序列化问题。当使用集合(set)或元组(tuple)作为value_set
参数时,之前的版本会在验证过程中失败。这个修复确保了更灵活的数据验证方式,特别是在处理离散值集合时更加可靠。
文档与开发者体验改进
- 更新了调度说明文档,提供了更清晰的任务调度指南
- 修正了默认Great Expectations目录的文档说明
- 改进了文档页面的用户行为跟踪,有助于团队更好地理解用户需求
技术架构优化
- 新增
ColumnDistinctValues
指标,用于获取列中的唯一值 - 改进了单指标计算时的类型处理,增强了类型安全性
- 实现了
ColumnValuesNotMatchRegexValues
指标,补充了正则表达式验证的反向功能
这些底层架构的改进不仅增强了系统的稳定性,也为开发者提供了更丰富的工具集来构建复杂的数据质量检查规则。
总结
Great Expectations 1.4.0版本通过新增多项核心功能、扩展数据源支持、修复关键问题以及优化开发者体验,进一步巩固了其作为数据质量监控首选工具的地位。特别是对Redshift的增强支持和正则表达式相关指标的扩展,使得该版本成为处理现代数据栈中常见场景的更强大工具。
对于已经在使用Great Expectations的团队,建议评估这些新功能如何能够优化现有的数据质量流程;对于考虑采用数据质量解决方案的组织,1.4.0版本提供了更全面的功能集来满足各种数据验证需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~049CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









