Great Expectations 1.4.0版本发布:数据质量监控工具的重大更新
Great Expectations是一个开源的数据质量监控工具,它帮助数据工程师和分析师定义、记录和验证数据质量预期。通过提供一套完整的测试框架,Great Expectations能够确保数据在管道中的每个阶段都符合预期,从而减少数据错误和异常。
核心功能增强
新增列采样值指标
1.4.0版本引入了ColumnSampleValues指标,这是一个重要的数据质量监控功能。该指标允许用户从数据列中随机采样值,这对于理解数据分布和识别异常值特别有用。在实际应用中,数据团队可以通过这个功能快速检查数据样本,而不需要处理整个数据集,大大提高了数据验证的效率。
正则表达式匹配指标扩展
新版本增加了两个与正则表达式相关的重要指标:
ColumnValuesMatchRegexCount:计算列中匹配指定正则表达式的值数量ColumnValuesMatchRegexValues:返回列中匹配指定正则表达式的具体值
这些功能扩展了Great Expectations在数据验证方面的能力,特别是在处理文本数据时,可以更精确地验证数据格式和内容。例如,可以验证电子邮件地址、电话号码或其他具有特定格式的数据是否符合预期模式。
数据源支持扩展
1.4.0版本显著增强了对Redshift数据仓库的支持:
- 将Redshift添加到支持的数据库列表中
- 新增了
gx-redshift额外依赖包,简化了Redshift集成 - 完善了Redshift相关的测试套件
这些改进使得使用Amazon Redshift作为数据源的用户能够更顺畅地集成Great Expectations到他们的数据工作流中。
问题修复与稳定性提升
本次发布修复了一个重要的JSON序列化问题。当使用集合(set)或元组(tuple)作为value_set参数时,之前的版本会在验证过程中失败。这个修复确保了更灵活的数据验证方式,特别是在处理离散值集合时更加可靠。
文档与开发者体验改进
- 更新了调度说明文档,提供了更清晰的任务调度指南
- 修正了默认Great Expectations目录的文档说明
- 改进了文档页面的用户行为跟踪,有助于团队更好地理解用户需求
技术架构优化
- 新增
ColumnDistinctValues指标,用于获取列中的唯一值 - 改进了单指标计算时的类型处理,增强了类型安全性
- 实现了
ColumnValuesNotMatchRegexValues指标,补充了正则表达式验证的反向功能
这些底层架构的改进不仅增强了系统的稳定性,也为开发者提供了更丰富的工具集来构建复杂的数据质量检查规则。
总结
Great Expectations 1.4.0版本通过新增多项核心功能、扩展数据源支持、修复关键问题以及优化开发者体验,进一步巩固了其作为数据质量监控首选工具的地位。特别是对Redshift的增强支持和正则表达式相关指标的扩展,使得该版本成为处理现代数据栈中常见场景的更强大工具。
对于已经在使用Great Expectations的团队,建议评估这些新功能如何能够优化现有的数据质量流程;对于考虑采用数据质量解决方案的组织,1.4.0版本提供了更全面的功能集来满足各种数据验证需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00