Great Expectations 1.4.0版本发布:数据质量监控工具的重大更新
Great Expectations是一个开源的数据质量监控工具,它帮助数据工程师和分析师定义、记录和验证数据质量预期。通过提供一套完整的测试框架,Great Expectations能够确保数据在管道中的每个阶段都符合预期,从而减少数据错误和异常。
核心功能增强
新增列采样值指标
1.4.0版本引入了ColumnSampleValues指标,这是一个重要的数据质量监控功能。该指标允许用户从数据列中随机采样值,这对于理解数据分布和识别异常值特别有用。在实际应用中,数据团队可以通过这个功能快速检查数据样本,而不需要处理整个数据集,大大提高了数据验证的效率。
正则表达式匹配指标扩展
新版本增加了两个与正则表达式相关的重要指标:
ColumnValuesMatchRegexCount:计算列中匹配指定正则表达式的值数量ColumnValuesMatchRegexValues:返回列中匹配指定正则表达式的具体值
这些功能扩展了Great Expectations在数据验证方面的能力,特别是在处理文本数据时,可以更精确地验证数据格式和内容。例如,可以验证电子邮件地址、电话号码或其他具有特定格式的数据是否符合预期模式。
数据源支持扩展
1.4.0版本显著增强了对Redshift数据仓库的支持:
- 将Redshift添加到支持的数据库列表中
- 新增了
gx-redshift额外依赖包,简化了Redshift集成 - 完善了Redshift相关的测试套件
这些改进使得使用Amazon Redshift作为数据源的用户能够更顺畅地集成Great Expectations到他们的数据工作流中。
问题修复与稳定性提升
本次发布修复了一个重要的JSON序列化问题。当使用集合(set)或元组(tuple)作为value_set参数时,之前的版本会在验证过程中失败。这个修复确保了更灵活的数据验证方式,特别是在处理离散值集合时更加可靠。
文档与开发者体验改进
- 更新了调度说明文档,提供了更清晰的任务调度指南
- 修正了默认Great Expectations目录的文档说明
- 改进了文档页面的用户行为跟踪,有助于团队更好地理解用户需求
技术架构优化
- 新增
ColumnDistinctValues指标,用于获取列中的唯一值 - 改进了单指标计算时的类型处理,增强了类型安全性
- 实现了
ColumnValuesNotMatchRegexValues指标,补充了正则表达式验证的反向功能
这些底层架构的改进不仅增强了系统的稳定性,也为开发者提供了更丰富的工具集来构建复杂的数据质量检查规则。
总结
Great Expectations 1.4.0版本通过新增多项核心功能、扩展数据源支持、修复关键问题以及优化开发者体验,进一步巩固了其作为数据质量监控首选工具的地位。特别是对Redshift的增强支持和正则表达式相关指标的扩展,使得该版本成为处理现代数据栈中常见场景的更强大工具。
对于已经在使用Great Expectations的团队,建议评估这些新功能如何能够优化现有的数据质量流程;对于考虑采用数据质量解决方案的组织,1.4.0版本提供了更全面的功能集来满足各种数据验证需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0126
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00