在Wasm Micro Runtime中启用引用类型和WASI支持
背景介绍
Wasm Micro Runtime (WAMR) 是一个轻量级的WebAssembly运行时环境,专为嵌入式系统和资源受限环境设计。当开发者尝试将C/C++代码编译为WebAssembly并在WAMR中运行时,可能会遇到一些常见的配置问题,特别是涉及到引用类型和WASI支持时。
引用类型问题的解决
在WebAssembly标准中,引用类型(Reference Types)是一项重要特性,它允许Wasm模块直接操作宿主环境的引用值。当开发者使用现代工具链(如Clang)编译C++代码到Wasm时,生成的模块可能会默认使用这一特性。
在WAMR中,引用类型支持默认是关闭的。要启用它,开发者需要在构建WAMR时设置相应的编译标志:
- 通过CMake命令行参数:
cmake -DWAMR_BUILD_REF_TYPES=1 ...
- 或者在CMakeLists.txt中直接设置:
set(WAMR_BUILD_REF_TYPES 1)
启用此选项后,WAMR将能够加载和使用包含引用类型特性的Wasm模块。
WASI支持的必要性
当C/C++代码中包含标准I/O操作(如printf)时,编译器会生成依赖WASI(Wasm System Interface)的代码。WASI提供了一套标准化的系统调用接口,使Wasm模块能够在不同环境中执行系统级操作。
在WAMR中,WASI支持也需要显式启用:
- 通过CMake命令行参数:
cmake -DWAMR_BUILD_LIBC_WASI=1 ...
- 或者在CMakeLists.txt中设置:
set(WAMR_BUILD_LIBC_WASI 1)
如果不启用WASI支持,运行时将无法解析如fd_write等WASI系统调用,导致模块加载失败。
完整配置示例
以下是一个完整的CMake配置示例,展示了如何同时启用引用类型和WASI支持:
set(WAMR_ROOT_DIR path/to/wasm-micro-runtime CACHE STRING "")
set(WAMR_BUILD_PLATFORM "linux" CACHE STRING "")
set(WAMR_BUILD_INTERP 1 CACHE BOOL "Enable interpreter mode")
set(WAMR_BUILD_FAST_INTERP 1 CACHE BOOL "Enable fast interpreter")
set(WAMR_BUILD_SHARED_MEMORY 1 CACHE BOOL "")
# 关键配置项
set(WAMR_BUILD_REF_TYPES 1)
set(WAMR_BUILD_LIBC_WASI 1)
include(${WAMR_ROOT_DIR}/build-scripts/runtime_lib.cmake)
include(${WAMR_ROOT_DIR}/core/shared/utils/uncommon/shared_uncommon.cmake)
add_library(vmlib
${WAMR_RUNTIME_LIB_SOURCE}
${UNCOMMON_SHARED_SOURCE}
)
target_link_libraries(your_target PRIVATE vmlib)
编译工具链注意事项
当使用Clang编译C/C++代码到Wasm时,建议使用-target wasm32-wasi选项,这会确保生成的Wasm模块与WASI标准兼容。例如:
clang -target wasm32-wasi -o program.wasm program.c
总结
在WAMR中运行现代工具链生成的Wasm模块时,正确配置运行时环境至关重要。通过启用引用类型和WASI支持,开发者可以充分利用WebAssembly的新特性,同时保持与传统C/C++代码的兼容性。这些配置选项使得WAMR能够更好地支持复杂的应用场景,包括标准I/O操作和高级内存管理功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00