Ash项目中的动作调用选项全解析
2025-07-08 23:32:27作者:谭伦延
概述
在Ash框架中,通过代码接口调用动作时,开发者可以使用多种选项来定制行为。这些选项提供了强大的灵活性,但同时也带来了发现和理解上的挑战。本文将全面解析Ash资源动作调用时可用的各种选项,帮助开发者充分利用框架提供的功能。
基本动作类型与选项
Ash框架支持多种基本动作类型,每种类型都有其特定的选项集:
- 读取动作(Read):用于查询数据
 - 创建动作(Create):用于新建记录
 - 更新动作(Update):用于修改现有记录
 - 销毁动作(Destroy):用于删除记录
 - 自定义动作(Action):开发者定义的特殊操作
 
通用选项详解
所有动作类型都支持以下通用选项:
:api:指定要使用的Ash API模块:timeout:设置操作超时时间:tracer:用于跟踪操作的模块:verbose?:启用详细日志记录:actor:设置执行操作的当前用户:authorize?:是否执行授权检查:return_notifications?:是否返回操作产生的通知:tenant:多租户环境下的租户标识
读取动作特有选项
读取动作(read)除了通用选项外,还支持以下特殊选项:
- 
:query:接受关键字列表形式的查询参数,可包含::filter:数据过滤条件:sort:结果排序规则:limit:返回结果数量限制:offset:结果偏移量:select:指定返回字段:load:预加载关联关系:distinct:去重设置
 - 
:page:分页相关参数 - 
:count:是否返回总数统计 - 
:after:分页游标(用于基于游标的分页) - 
:before:分页游标(用于基于游标的分页) 
变更动作选项
创建(create)、更新(update)和销毁(destroy)动作共享以下选项:
:changeset:预构建的变更集:params:原始参数(自动转换为变更集):select:指定返回字段:load:操作后预加载关联关系:return_changeset?:是否返回变更集而非结果
创建和更新动作特有选项:
:upsert?:是否执行upsert操作:upsert_identity:upsert操作使用的唯一标识
查询构建选项
当通过query参数传递选项时,可以使用Ash.Query.build/3支持的所有选项,包括:
- 复杂过滤条件构建
 - 聚合计算配置
 - 子查询设置
 - 计算字段定义
 - 高级排序规则
 
最佳实践建议
- 性能优化:合理使用
:select和:load选项避免过度获取数据 - 安全考虑:始终设置
:actor并启用:authorize?选项 - 调试技巧:在开发时启用
:verbose?选项查看详细执行过程 - 分页策略:根据数据量选择合适的
:page或游标分页方式 - 变更控制:利用
:return_changeset?在复杂操作中获取中间状态 
总结
Ash框架提供了丰富的动作调用选项,这些选项共同构成了框架灵活性的基础。理解并合理使用这些选项,可以显著提高开发效率和应用程序性能。开发者应当根据具体场景选择合适的选项组合,并在项目文档中记录重要的选项使用决策。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446