Nemo_Go项目v3.1.0版本发布:指纹识别与POC管理的重大升级
Nemo_Go是一款开源的网络安全工具,专注于资产发现、漏洞扫描和指纹识别。该项目采用Go语言开发,具有跨平台特性,能够帮助安全研究人员高效地进行网络资产测绘和漏洞检测。
本次发布的v3.1.0版本带来了多项重要功能更新和优化,主要集中在指纹识别能力和POC管理方面。这些改进显著提升了工具的自动化程度和使用便捷性,使安全测试工作更加高效。
指纹识别能力增强
新版本最大的亮点之一是集成了fingerprinthub的指纹库,大幅扩充了系统的指纹识别能力。fingerprinthub是一个知名的开源指纹库,包含大量Web应用、中间件、操作系统等各类资产的指纹特征。通过集成这一资源,Nemo_Go现在能够识别更多类型的网络资产,提高了扫描的准确性和覆盖率。
同时,系统实现了指纹与POC的自动匹配机制。这一功能使得当系统识别出特定服务或应用时,能够自动关联并执行相应的漏洞检测脚本(POC),大大简化了安全测试的工作流程。这种智能化的关联机制减少了人工干预的需求,使漏洞检测过程更加自动化。
POC管理功能升级
v3.1.0版本对POC管理进行了重大改进,新增了POC文件的在线管理功能。安全团队现在可以直接通过Web界面批量上传POC文件,而不需要手动在服务器上进行文件操作。这一改进极大方便了POC库的维护和更新。
需要注意的是,上传POC文件后,用户需要在节点管理中手动同步"资源与POC",这一设计确保了POC更新的可控性,避免因自动同步可能带来的意外问题。这种半自动化的同步机制在便利性和安全性之间取得了良好的平衡。
系统性能优化
在底层架构方面,新版本对worker节点的资源同步和重置功能进行了优化。这些改进使得分布式部署下的资源管理更加高效,减少了节点间的通信开销,提升了整体系统的稳定性和响应速度。
此外,开发团队还修复了若干已知问题,进一步提升了系统的可靠性和用户体验。这些看似微小的改进实际上对工具的长期稳定运行至关重要。
跨平台支持
Nemo_Go继续保持其优秀的跨平台特性,v3.1.0版本提供了针对Windows、Linux和macOS三大主流操作系统的预编译版本。用户可以根据自己的运行环境选择合适的版本进行部署,这种灵活性使得Nemo_Go能够适应各种不同的安全测试场景。
总的来说,Nemo_Go v3.1.0版本的发布标志着该项目在自动化程度和易用性方面又向前迈进了一大步。新增的指纹识别能力和POC管理功能将帮助安全团队更高效地完成资产发现和漏洞检测工作,是网络安全从业者值得关注的一个工具更新。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00