基于OpenBMB/OmniLMM大模型的古籍文字与手写字OCR微调指南
2025-05-11 08:29:41作者:鲍丁臣Ursa
背景介绍
OpenBMB/OmniLMM作为一款强大的多模态大模型,其OCR(光学字符识别)能力已经得到了广泛验证。针对古籍文字和手写字的识别需求,我们可以通过微调(fine-tuning)的方式进一步提升模型在这两个特殊领域的识别准确率。
数据准备要点
1. 数据收集原则
古籍文字识别需要特别注意以下特点:
- 字体多样性:不同朝代的刻本、写本字体差异较大
- 版面复杂性:古籍常包含双行小注、眉批等复杂排版
- 特殊字符:存在大量现代不常用的异体字、避讳字等
手写字识别则需关注:
- 书写风格差异:不同人的笔迹差异显著
- 连笔与变形:手写常出现连笔、简化和变形
- 背景干扰:手写常出现在非纯色背景上
2. 数据标注规范
建议采用以下标注格式:
- 单行文本:适合简单古籍版面或手写单行内容
- 多行文本区域:适合复杂排版的古籍
- 字符级标注:对特殊难字可增加字符级标注
模型微调策略
1. 特征提取层调整
考虑到古籍和手写字的特殊性,建议:
- 保留预训练模型的主干网络
- 调整或增强浅层特征提取能力
- 针对手写特点增加动态感受野模块
2. 损失函数优化
推荐组合使用:
- CTC损失:保持序列识别能力
- 注意力机制:增强对模糊字符的关注
- 难例挖掘:针对易混淆字符加强训练
3. 训练技巧
- 渐进式训练:先简单样本后复杂样本
- 数据增强:适当添加模糊、噪声等增强
- 混合精度训练:加速训练过程
评估与优化
建立专门的评估集应包含:
- 不同清晰度的古籍样本
- 多种书写风格的手写样本
- 特殊字符和异体字样本
优化方向:
- 错误分析:重点分析高频错误类型
- 领域适应:针对特定古籍类型专项优化
- 集成学习:结合传统OCR方法提升稳定性
部署建议
实际应用时考虑:
- 预处理流程:针对古籍泛黄、破损的特殊处理
- 后处理规则:加入古籍专用字典和语法规则
- 交互式修正:为疑难字提供人工修正接口
通过以上方法,可以显著提升OpenBMB/OmniLMM在古籍和手写字识别任务上的性能,同时保持模型原有的强大泛化能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355