Cheshire Cat AI 核心框架中的认证机制设计与实现
2025-06-29 13:51:29作者:伍希望
认证机制演进背景
在Cheshire Cat AI核心框架的开发过程中,认证机制的设计经历了多次迭代。最初的设计仅对HTTP端点进行API密钥验证,而WebSocket连接则完全开放。这种设计在安全性方面存在明显缺陷,特别是在生产环境中使用时,可能导致未经授权的访问。
认证机制设计目标
项目团队最终确定了以下设计目标:
- 分离HTTP和WebSocket的认证机制
- 提供可扩展的认证接口
- 保持向后兼容性
- 支持多种认证策略
技术实现方案
基础认证类设计
框架实现了一个基础认证类BaseAuth,提供了默认的认证逻辑:
class BaseAuth():
def is_master_key(self, request):
# 使用环境变量中的API_KEY进行验证
return request.header["access_token"] == getenv("API_KEY")
def is_http_allowed(self, request):
return self.is_master_key(request)
def is_ws_allowed(self, websocket):
return True
自定义认证扩展
开发者可以通过继承BaseAuth类来实现自定义认证逻辑:
class MyAuth(BaseAuth):
def is_master_key(self, request):
# 可覆盖主密钥验证逻辑
return False
def is_http_allowed(self, request):
# 自定义HTTP认证逻辑
return custom_http_check(request)
def is_ws_allowed(self, websocket):
# 自定义WebSocket认证逻辑
return custom_ws_check(websocket)
端点保护机制
框架使用依赖注入来保护端点:
@router.get("/protected-endpoint")
def protected_endpoint(request, payload, Depends(http_auth)):
# 业务逻辑
pass
认证检查函数http_auth实现了OR逻辑,允许主密钥或自定义认证通过:
def http_auth(app, request):
cat = app.state.ccat
if not (cat.auth.is_master_key(request) or cat.auth.is_http_allowed(request)):
raise HTTPException(status_code=403)
安全最佳实践
- 密钥分离:使用不同的环境变量
AUTH_KEY和WS_AUTH_KEY分别保护HTTP和WebSocket端点 - 安全传输:建议在生产环境中启用WSS(WebSocket Secure)而非WS
- 权限控制:认证成功后可在工作内存中设置用户权限
- 插件扩展:通过插件系统支持OAuth等高级认证方案
技术决策考量
项目团队在设计中考虑了以下因素:
- 保持现有客户端兼容性
- 平衡安全性与易用性
- 提供足够的扩展点
- 清晰的职责分离
这种认证机制设计既满足了基本安全需求,又为未来的扩展提供了充分的空间,是框架安全架构的重要进步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140