Longhorn中定时任务在集群重启后失效问题分析
问题现象
在Longhorn分布式存储系统中,当集群节点发生重启时,用户配置的定时快照和定时备份任务可能会出现失效的情况。具体表现为:
- 定时备份任务停止工作:虽然快照任务仍在正常运行,但相关联的备份任务不再自动执行
- 定时快照任务停止工作:备份任务正常运行,但快照任务不再自动触发
问题背景
Longhorn提供了定时任务功能,允许用户按计划自动创建卷的快照和备份。这些定时任务通常配置为每2分钟执行一次,并保留最新的1个快照或备份。在集群稳定性测试中,通过反复重启整个集群(包括控制平面节点和工作节点)来验证系统的健壮性时,发现了上述定时任务失效的问题。
技术分析
通过对系统日志和资源状态的检查,发现问题的根本原因与Kubernetes Job资源的处理机制有关:
-
Pending状态的Job:当集群重启时,部分定时任务对应的Job会卡在Pending状态,阻塞后续任务的执行。这是由于Kubernetes Job控制器在异常恢复时的处理逻辑导致的。
-
资源保留策略:定时任务配置了"保留1个"的策略,但系统中存在多个失败状态的备份记录,这可能干扰了任务调度器的判断。
-
任务并发控制:Longhorn对定时任务的并发执行有严格控制,前一个未完成的任务会阻止新任务的创建。
解决方案
对于遇到此问题的用户,可以采取以下临时解决方案:
- 手动删除处于Pending状态的Job资源:
kubectl delete job <pending-job-name> -n longhorn-system
-
清理无效的备份记录,确保系统状态干净。
-
检查并修复可能存在的卷挂载问题,确保所有卷都处于健康状态。
长期修复计划
Longhorn开发团队已经将此问题纳入修复计划,预计在v1.9.0版本中提供完整的解决方案。修复将包括:
-
增强任务调度器的健壮性,确保在集群重启后能正确恢复定时任务。
-
改进Job资源的清理机制,自动处理卡住的任务。
-
优化备份记录的垃圾回收策略,避免无效记录干扰任务执行。
最佳实践建议
在生产环境中使用Longhorn定时任务时,建议:
-
为关键业务卷配置监控,确保定时任务按预期执行。
-
定期检查系统日志,及时发现并处理异常任务。
-
在计划性维护前,暂停重要定时任务,维护完成后再重新启用。
-
考虑使用多个定时任务交叉验证的方式提高可靠性。
通过理解这些技术细节和解决方案,用户可以更好地管理Longhorn中的定时任务,确保数据保护策略的可靠执行。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









