理解lm-evaluation-harness中Llama-2模型在Wikitext上的困惑度差异问题
2025-05-26 02:20:56作者:胡易黎Nicole
在大型语言模型评估领域,困惑度(Perplexity)是一个重要的指标,用于衡量模型对文本数据的预测能力。然而,在使用EleutherAI的lm-evaluation-harness工具评估Llama-2 7B模型在Wikitext数据集上的表现时,研究人员发现困惑度结果与其他代码库报告的标准值(5.47)存在显著差异(8.7071)。
问题背景
困惑度是评估语言模型性能的核心指标之一,它反映了模型预测下一个词的不确定性程度。对于Llama-2 7B模型,多个量化研究论文都报告了其在Wikitext-2数据集上的FP16基线困惑度为5.47。然而,使用lm-evaluation-harness工具得到的结果却明显偏高。
值得注意的是,这种差异仅出现在Wikitext评估上,其他任务如PIQA、Winogrande、ARC等评估结果与论文报告值完全一致,这使得问题更加令人困惑。
差异原因分析
经过深入调查,发现这种差异主要源于两个关键因素:
-
归一化方式不同:
- lm-evaluation-harness默认使用词数(word count)进行归一化
- 其他实现(如AWQ、GPTQ)则使用标记数(token count)进行归一化
- 这种差异源于lm-evaluation-harness传统上报告与分词器无关的指标
-
数据集处理方式不同:
- lm-evaluation-harness使用文档级别的Wikitext数据集(EleutherAI/wikitext_document_level)
- 其他实现将数据集中的所有文本连接成一个长序列后再处理
- lm-evaluation-harness为每个文档单独创建不重叠的块(chunks),然后报告文档级困惑度的聚合度量
- 其他实现先连接所有文本,再创建重叠的块
解决方案
为了与其他实现的结果保持一致,可以采取以下方法:
-
修改归一化方式:
- 将困惑度计算从词数归一化改为标记数归一化
- 这需要访问分词器来计算标记数量
-
调整数据集处理方式:
- 使用聚合的Wikitext数据集而非文档级版本
- 将所有文本连接成单个长序列后再分块处理
通过同时调整这两个因素,使用lm-evaluation-harness也能得到与其他实现一致的困惑度结果(5.4775)。
技术建议
对于需要在不同评估框架间比较结果的用户,建议:
- 明确记录使用的归一化方式(词数或标记数)
- 注明数据集的具体处理流程
- 对于关键比较,考虑使用相同的评估代码库
- 在论文中详细说明评估方法,确保结果可复现
理解这些实现差异对于正确解释模型性能评估结果至关重要,特别是在比较不同研究或不同量化方法的效果时。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19