理解lm-evaluation-harness中Llama-2模型在Wikitext上的困惑度差异问题
2025-05-26 18:07:15作者:胡易黎Nicole
在大型语言模型评估领域,困惑度(Perplexity)是一个重要的指标,用于衡量模型对文本数据的预测能力。然而,在使用EleutherAI的lm-evaluation-harness工具评估Llama-2 7B模型在Wikitext数据集上的表现时,研究人员发现困惑度结果与其他代码库报告的标准值(5.47)存在显著差异(8.7071)。
问题背景
困惑度是评估语言模型性能的核心指标之一,它反映了模型预测下一个词的不确定性程度。对于Llama-2 7B模型,多个量化研究论文都报告了其在Wikitext-2数据集上的FP16基线困惑度为5.47。然而,使用lm-evaluation-harness工具得到的结果却明显偏高。
值得注意的是,这种差异仅出现在Wikitext评估上,其他任务如PIQA、Winogrande、ARC等评估结果与论文报告值完全一致,这使得问题更加令人困惑。
差异原因分析
经过深入调查,发现这种差异主要源于两个关键因素:
-
归一化方式不同:
- lm-evaluation-harness默认使用词数(word count)进行归一化
- 其他实现(如AWQ、GPTQ)则使用标记数(token count)进行归一化
- 这种差异源于lm-evaluation-harness传统上报告与分词器无关的指标
-
数据集处理方式不同:
- lm-evaluation-harness使用文档级别的Wikitext数据集(EleutherAI/wikitext_document_level)
- 其他实现将数据集中的所有文本连接成一个长序列后再处理
- lm-evaluation-harness为每个文档单独创建不重叠的块(chunks),然后报告文档级困惑度的聚合度量
- 其他实现先连接所有文本,再创建重叠的块
解决方案
为了与其他实现的结果保持一致,可以采取以下方法:
-
修改归一化方式:
- 将困惑度计算从词数归一化改为标记数归一化
- 这需要访问分词器来计算标记数量
-
调整数据集处理方式:
- 使用聚合的Wikitext数据集而非文档级版本
- 将所有文本连接成单个长序列后再分块处理
通过同时调整这两个因素,使用lm-evaluation-harness也能得到与其他实现一致的困惑度结果(5.4775)。
技术建议
对于需要在不同评估框架间比较结果的用户,建议:
- 明确记录使用的归一化方式(词数或标记数)
- 注明数据集的具体处理流程
- 对于关键比较,考虑使用相同的评估代码库
- 在论文中详细说明评估方法,确保结果可复现
理解这些实现差异对于正确解释模型性能评估结果至关重要,特别是在比较不同研究或不同量化方法的效果时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
526
3.72 K
Ascend Extension for PyTorch
Python
333
397
暂无简介
Dart
767
190
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
879
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
168
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246