在Aider项目中配置本地LLM模型时遇到的NotFoundError问题解析
问题背景
Aider是一个基于AI的代码辅助工具,它允许开发者使用大型语言模型(LLM)来协助编写和修改代码。在实际使用中,许多开发者倾向于在本地运行LLM模型以获得更好的隐私保护和定制化体验。本文讨论的是在macOS系统上使用mlx包运行本地LLM模型时遇到的一个典型配置问题。
问题现象
用户尝试配置两个本地运行的LLM模型:
- 一个作为代码编辑器模型(Qwen2.5-Coder-14B-Instruct-4bit)
- 另一个作为架构师模型(Qwen_QwQ-32B-Preview_MLX-4bit)
通过mlx_lm.server分别在不同的端口(默认8080和8081)启动这两个模型后,尝试通过Aider连接时遇到了litellm.NotFoundError: NotFoundError: APIException - Not Found错误。
技术分析
这个错误表明Aider无法正确连接到本地运行的LLM服务。经过深入分析,发现问题的根源在于:
-
API端点格式不正确:Aider期望的API端点格式与mlx_lm.server提供的格式可能存在差异。mlx_lm.server通常提供的是兼容标准API的接口,但路径可能需要特定配置。
-
litellm兼容性问题:Aider底层使用litellm库来处理模型连接,而mlx_lm.server可能没有完全实现litellm期望的所有API端点。
-
模型命名规范:直接使用本地HTTP地址作为模型名称可能导致解析问题。
解决方案
通过研究发现,正确的解决方法是使用litellm的代理功能来桥接本地模型和Aider。具体配置方式如下:
- 确保mlx_lm.server正确运行并监听指定端口
- 使用litellm的代理配置来包装本地模型服务
- 在Aider配置中引用经过litellm代理的模型名称
这种方案之所以有效,是因为litellm作为中间层可以:
- 标准化不同后端模型的API接口
- 提供额外的错误处理和重试机制
- 简化Aider与各种本地模型的集成
最佳实践建议
对于希望在Aider中使用本地LLM模型的开发者,建议遵循以下实践:
-
统一使用litellm作为中间件:即使模型服务本身提供标准兼容API,也建议通过litellm进行代理
-
明确区分模型角色:像示例中那样为不同用途(编辑、架构)配置不同模型是个好做法
-
测试连接性:在集成到Aider前,先用简单HTTP客户端测试模型服务是否可达
-
关注模型格式兼容性:确保本地模型量化格式(如4bit)与运行环境兼容
总结
在Aider项目中集成本地LLM模型时,API兼容性和中间件选择是关键考量因素。通过使用litellm作为代理层,可以显著提高本地模型与Aider的兼容性,避免类似NotFoundError的问题。这种架构也为未来切换或添加更多本地模型提供了灵活性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00