在Aider项目中配置本地LLM模型时遇到的NotFoundError问题解析
问题背景
Aider是一个基于AI的代码辅助工具,它允许开发者使用大型语言模型(LLM)来协助编写和修改代码。在实际使用中,许多开发者倾向于在本地运行LLM模型以获得更好的隐私保护和定制化体验。本文讨论的是在macOS系统上使用mlx包运行本地LLM模型时遇到的一个典型配置问题。
问题现象
用户尝试配置两个本地运行的LLM模型:
- 一个作为代码编辑器模型(Qwen2.5-Coder-14B-Instruct-4bit)
- 另一个作为架构师模型(Qwen_QwQ-32B-Preview_MLX-4bit)
通过mlx_lm.server分别在不同的端口(默认8080和8081)启动这两个模型后,尝试通过Aider连接时遇到了litellm.NotFoundError: NotFoundError: APIException - Not Found错误。
技术分析
这个错误表明Aider无法正确连接到本地运行的LLM服务。经过深入分析,发现问题的根源在于:
-
API端点格式不正确:Aider期望的API端点格式与mlx_lm.server提供的格式可能存在差异。mlx_lm.server通常提供的是兼容标准API的接口,但路径可能需要特定配置。
-
litellm兼容性问题:Aider底层使用litellm库来处理模型连接,而mlx_lm.server可能没有完全实现litellm期望的所有API端点。
-
模型命名规范:直接使用本地HTTP地址作为模型名称可能导致解析问题。
解决方案
通过研究发现,正确的解决方法是使用litellm的代理功能来桥接本地模型和Aider。具体配置方式如下:
- 确保mlx_lm.server正确运行并监听指定端口
- 使用litellm的代理配置来包装本地模型服务
- 在Aider配置中引用经过litellm代理的模型名称
这种方案之所以有效,是因为litellm作为中间层可以:
- 标准化不同后端模型的API接口
- 提供额外的错误处理和重试机制
- 简化Aider与各种本地模型的集成
最佳实践建议
对于希望在Aider中使用本地LLM模型的开发者,建议遵循以下实践:
-
统一使用litellm作为中间件:即使模型服务本身提供标准兼容API,也建议通过litellm进行代理
-
明确区分模型角色:像示例中那样为不同用途(编辑、架构)配置不同模型是个好做法
-
测试连接性:在集成到Aider前,先用简单HTTP客户端测试模型服务是否可达
-
关注模型格式兼容性:确保本地模型量化格式(如4bit)与运行环境兼容
总结
在Aider项目中集成本地LLM模型时,API兼容性和中间件选择是关键考量因素。通过使用litellm作为代理层,可以显著提高本地模型与Aider的兼容性,避免类似NotFoundError的问题。这种架构也为未来切换或添加更多本地模型提供了灵活性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00