HuggingFace Datasets中IterableDataset恢复检查点时的样本丢失问题解析
2025-05-10 16:54:21作者:裘晴惠Vivianne
问题背景
在HuggingFace Datasets库的使用过程中,开发者发现当使用IterableDataset并尝试从检查点恢复训练时,会出现样本丢失的情况。这种情况特别容易发生在以下条件同时满足时:
- 数据集分片数量(
num_shards)能被世界大小(world_size)整除 - 底层数据支持
iter_arrow迭代方式 - 数据集需要进行格式化操作
技术原理分析
IterableDataset是HuggingFace Datasets中用于处理流式数据的重要组件。当使用分布式训练时,split_dataset_by_node函数会根据当前节点的rank和world_size将数据集划分为不同的分片。
问题的核心在于FormattedExamplesIterable和底层迭代器的协作方式:
- 父迭代器(
FormattedExamplesIterable)会从子迭代器的iter_arrow获取一批样本 - 子迭代器在处理时会预先增加
shard_example_idx计数器 - 当迭代在中途停止时(比如保存检查点),计数器的位置与实际处理的样本位置会出现偏差
问题复现
通过以下典型场景可以复现该问题:
# 创建包含24个样本的数据集,分为4个分片
ds = Dataset.from_dict({"n": list(range(24))})
ds = ds.to_iterable_dataset(num_shards=4)
# 模拟分布式环境(4个节点,当前为rank 0)
world_size = 4
rank = 0
ds_rank = split_dataset_by_node(ds, rank, world_size)
# 首次迭代并保存状态
it = iter(ds_rank)
examples = []
for idx, example in enumerate(it):
examples.append(example)
if idx == 2: # 处理3个样本后保存状态
state_dict = ds_rank.state_dict()
break
# 恢复状态后继续迭代
ds_rank.load_state_dict(state_dict)
it_resumed = iter(ds_rank)
解决方案
开发团队通过引入RebatchedArrowExamplesIterable解决了这个问题。这个解决方案的核心思想是:
- 在格式化迭代器之前插入一个重新分批次的处理层
- 确保子迭代器能够感知父迭代器实际处理的样本位置
- 在恢复检查点时正确调整批次边界和计数器位置
这种方法既保持了数据流式处理的效率,又确保了检查点恢复时样本的连续性。
最佳实践建议
对于使用IterableDataset的开发者,建议:
- 在分布式训练时,注意分片数量与节点数量的关系
- 如果需要进行格式化操作,考虑更新到包含此修复的版本
- 在保存检查点时,测试恢复后的数据连续性
- 对于关键任务,可以在恢复后验证前几个样本是否符合预期
这个问题展示了在流式数据处理中保持状态一致性的挑战,也为处理类似场景提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
664
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
298
Ascend Extension for PyTorch
Python
216
236
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
140
875
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818