Makie.jl中直方图概率密度归一化问题解析
2025-07-01 23:57:44作者:郁楠烈Hubert
问题背景
在使用Makie.jl进行数据可视化时,用户发现当使用normalization = :pdf参数绘制直方图时,得到的归一化结果与预期不符。具体表现为直方图的纵轴数值明显偏小,不符合概率密度函数(PDF)应有的特性。
技术分析
这个问题的根源实际上不在Makie.jl本身,而是其依赖的StatsBase包中直方图归一化处理方式的设计。让我们通过技术细节来理解这个问题:
-
直方图归一化模式差异:
:pdf模式会将每个bin的高度除以(bin宽度×总样本数),使得整个直方图的面积为1:probability模式则简单地将每个bin的高度除以总样本数,使得所有bin高度的总和为1
-
实际表现: 当使用
:pdf模式时,Makie显示的数值明显小于预期,这是因为StatsBase的实现方式导致的。例如,对于一个包含1000个样本的数据集,使用:pdf模式归一化后的数值会比使用:probability模式小约一个数量级。 -
正确用法: 如果用户希望得到传统的概率直方图(各bin高度之和为1),应该使用
normalization = :probability参数。而:pdf模式更适合需要严格概率密度估计的场景。
解决方案
对于大多数常规使用场景,建议采用以下方案:
using CairoMakie
data = 0.5 * randn(1000) .+ 3.5
hist(data, normalization = :probability, ...)
这种用法将产生预期的归一化效果,其中每个bin的高度代表该区间内样本出现的相对频率。
技术建议
-
理解归一化类型:
- 在统计分析中,不同的归一化方式适用于不同场景
:probability适合频率分析,:pdf适合密度估计
-
文档说明:
- 虽然这是一个底层行为,但可以考虑在Makie文档中加入说明,帮助用户理解不同归一化模式的区别
-
可视化验证:
- 绘制直方图时,建议同时显示归一化参数,避免误解
总结
这个问题揭示了统计可视化中一个常见的理解误区。通过深入分析,我们了解到这实际上是StatsBase包的预期行为,而非Makie.jl的bug。正确理解和使用不同的归一化模式,可以帮助用户获得更准确的数据可视化结果。
对于大多数应用场景,使用:probability归一化模式能够提供更直观的结果,而:pdf模式则保留给需要严格概率密度估计的专业场景使用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
321
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
Ascend Extension for PyTorch
Python
157
179
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
641
251
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
244
86
暂无简介
Dart
610
136
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.04 K