TiKV 内存管理优化:支持自定义消息拒绝逻辑
2025-05-14 21:42:42作者:戚魁泉Nursing
背景介绍
在分布式存储系统TiKV中,内存管理是一个至关重要的环节。当系统内存资源紧张时,TiKV需要采取适当的措施来防止内存耗尽导致的服务不可用。目前TiKV已经实现了基于内存使用情况的raft消息拒绝机制,但这种机制存在一定的局限性。
现有机制分析
当前TiKV的内存管理机制主要针对raft消息处理,具体规则如下:
- 当系统内存使用达到高水位线(high water)时触发保护机制
- 当raft集合消耗的内存超过总使用内存的
reject_messages_on_memory_ratio比例时,会拒绝新的msgAppend消息
这种机制在基于RocksDB引擎的TiKV中工作良好,但对于使用不同存储引擎的场景(如TiFlash的列式存储引擎)则存在不足。
问题挑战
在TiFlash等列式存储引擎场景下,现有机制面临两个主要挑战:
- 快照处理内存消耗:列式存储引擎在应用快照时需要消耗大量内存,但当前机制无法针对msgSnapshot消息进行限制
- 内存分配差异:列式存储引擎的内存使用模式与传统行式存储不同,大部分内存消耗发生在存储引擎层而非raft层
技术方案
为了解决这些问题,TiKV需要支持更灵活的内存管理策略:
- 扩展消息类型支持:不仅限于msgAppend,还需要支持对msgSnapshot等消息类型的拒绝逻辑
- 引入存储引擎感知:内存管理需要了解不同存储引擎的内存使用特性
- 自定义拒绝策略:允许不同存储引擎实现自己的内存评估和拒绝逻辑
实现思路
具体实现上可以考虑以下技术路线:
- 抽象接口设计:定义内存管理接口,允许存储引擎实现自定义逻辑
- 内存使用反馈机制:存储引擎定期报告其内存使用情况
- 动态策略调整:根据当前工作负载和存储引擎类型动态调整拒绝策略
- 分级保护机制:针对不同消息类型设置不同的保护阈值
预期收益
这种改进将为系统带来以下好处:
- 更好的资源隔离:防止单一组件耗尽系统内存
- 更高的系统稳定性:在内存压力下更优雅地降级
- 更灵活的架构:支持不同类型的存储引擎协同工作
- 更精细的控制:可以根据实际业务需求调整保护策略
总结
TiKV的内存管理机制需要从简单的固定策略演进为可插拔的灵活架构。通过支持自定义的消息拒绝逻辑,TiKV能够更好地适应不同存储引擎的特性和各种工作负载场景,为上层应用提供更稳定可靠的服务。这种改进也体现了TiKV作为云原生数据库核心组件的设计理念:灵活、可扩展和自适应。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
664
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
299
Ascend Extension for PyTorch
Python
216
236
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
140
875
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
649
仓颉编程语言开发者文档。
59
818