探索跨模态人脸识别的新境界:Cross-Modal-Re-ID-baseline(AGW)
2024-05-21 22:51:01作者:卓艾滢Kingsley
项目介绍
Cross-Modal-Re-ID-baseline(AGW)是一个基于Pytorch的开源项目,旨在解决可见光与热成像之间的跨模态人重识别问题。该项目提供了一种名为AGW的方法,以提高在RegDB和SYSU-MM01数据集上的性能。通过采用两流网络结构和ResNet50作为基础模型,项目展示了如何利用深度学习技术实现有效的人脸识别。
项目技术分析
AGW方法采用了两流网络架构,分别处理可见光和热成像的数据流。结合预训练的ImageNet模型,该框架利用softmax损失函数进行监督学习,以优化不同模态下的特征表示。训练过程简单明了,支持手动定义数据路径,并提供了灵活的参数调整选项,如初始学习率、采样策略等。测试阶段则可以通过指定模型路径,选择不同的测试模式进行评估。
项目及技术应用场景
- 安全监控:在跨摄像头、跨环境的安全系统中,AGW可以用于识别不同模态的个体,增强监控系统的鲁棒性和可靠性。
- 智能硬件:结合可见光和热成像传感器,AGW可用于智能门锁或无人机等人脸识别应用,即使在光照变化大或夜间也能准确识别人脸。
- 学术研究:对于研究人员来说,这是一个了解和探索跨模态人重识别技术的理想平台,可在此基础上进行进一步的算法改进。
项目特点
- 高效性:采用ResNet50作为骨干网络,保证了模型的计算效率和识别精度。
- 灵活性:支持在RegDB和SYSU-MM01两个数据集上进行训练和测试,易于切换和扩展到其他数据集。
- 易用性:简洁的命令行接口,只需几行代码即可启动训练和测试流程。
- 可定制化:提供多种超参数供调优,便于针对特定场景微调模型性能。
- 社区支持:作者提供联系方式,方便用户咨询和交流,持续更新和维护项目。
如果你对跨模态人重识别感兴趣,或者正寻找一个强大的工具来提升你的项目,Cross-Modal-Re-ID-baseline(AGW)无疑是值得尝试的选择。立即下载并开始你的探索之旅,一起步入人脸识别的新领域吧!
git clone https://github.com/your_github_link/Cross-Modal-Re-ID-baseline
cd Cross-Modal-Re-ID-baseline
python train.py --dataset sysu --lr 0.1 --method agw --gpu 1
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885