在dotnet/extensions项目中正确使用IServiceProvider实现AI函数调用
理解IServiceProvider在AI函数调用中的作用
在dotnet/extensions项目中,IServiceProvider是依赖注入系统的核心接口,它负责提供应用程序所需的服务实例。当我们需要在AI函数调用中使用服务时,正确获取IServiceProvider实例至关重要。
常见问题分析
开发者经常遇到的一个典型问题是:在创建AI函数实例时,尝试通过AIFunctionArguments的Services属性获取服务,但总是返回null。这种情况通常发生在没有正确设置服务提供程序的情况下。
解决方案详解
要解决这个问题,我们需要理解整个服务传递链:
-
服务注册阶段:首先需要在应用程序构建时正确注册所需服务。例如,使用AddSingleton、AddScoped或AddTransient等方法注册ToolCallingProviderHttp服务。
-
服务传递机制:当使用UseFunctionInvocation中间件时,系统会自动从构建器中获取服务集合,并用这些服务构造FunctionInvokingChatClient实例。
-
调用链传递:FunctionInvokingChatClient会存储这些服务,并在调用InvokeAsync方法时将它们作为参数传递。
正确实现模式
以下是推荐的实现方式:
// 1. 首先确保在服务注册阶段正确配置
var builder = new HostBuilder()
.ConfigureServices(services =>
{
services.AddSingleton<ToolCallingProviderHttp>();
// 其他服务注册...
});
// 2. 在函数创建时使用正确的服务获取方式
var createAIFunctionInstance = (AIFunctionArguments args) =>
{
// 确保args.Services不为null
var toolProvider = args.Services?.GetService<ToolCallingProviderHttp>();
var instance = Activator.CreateInstance(classAssembly, toolProvider);
return instance;
};
最佳实践建议
-
服务验证:在使用服务前,始终检查IServiceProvider是否为null。
-
依赖注入:尽可能使用构造函数注入而非服务获取模式。
-
错误处理:为服务获取添加适当的错误处理逻辑,提供有意义的错误信息。
-
生命周期管理:了解不同服务生命周期(Singleton、Scoped、Transient)的区别,根据需求选择合适的生命周期。
总结
在dotnet/extensions项目中实现AI函数调用时,正确处理IServiceProvider的传递是确保功能正常工作的关键。通过理解服务注册、传递机制和正确实现模式,开发者可以避免常见的服务获取问题,构建更健壮的AI功能集成。记住,服务的可用性取决于整个调用链的正确配置,从服务注册到最终调用的每个环节都需要正确设置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00