在dotnet/extensions项目中正确使用IServiceProvider实现AI函数调用
理解IServiceProvider在AI函数调用中的作用
在dotnet/extensions项目中,IServiceProvider是依赖注入系统的核心接口,它负责提供应用程序所需的服务实例。当我们需要在AI函数调用中使用服务时,正确获取IServiceProvider实例至关重要。
常见问题分析
开发者经常遇到的一个典型问题是:在创建AI函数实例时,尝试通过AIFunctionArguments的Services属性获取服务,但总是返回null。这种情况通常发生在没有正确设置服务提供程序的情况下。
解决方案详解
要解决这个问题,我们需要理解整个服务传递链:
-
服务注册阶段:首先需要在应用程序构建时正确注册所需服务。例如,使用AddSingleton、AddScoped或AddTransient等方法注册ToolCallingProviderHttp服务。
-
服务传递机制:当使用UseFunctionInvocation中间件时,系统会自动从构建器中获取服务集合,并用这些服务构造FunctionInvokingChatClient实例。
-
调用链传递:FunctionInvokingChatClient会存储这些服务,并在调用InvokeAsync方法时将它们作为参数传递。
正确实现模式
以下是推荐的实现方式:
// 1. 首先确保在服务注册阶段正确配置
var builder = new HostBuilder()
.ConfigureServices(services =>
{
services.AddSingleton<ToolCallingProviderHttp>();
// 其他服务注册...
});
// 2. 在函数创建时使用正确的服务获取方式
var createAIFunctionInstance = (AIFunctionArguments args) =>
{
// 确保args.Services不为null
var toolProvider = args.Services?.GetService<ToolCallingProviderHttp>();
var instance = Activator.CreateInstance(classAssembly, toolProvider);
return instance;
};
最佳实践建议
-
服务验证:在使用服务前,始终检查IServiceProvider是否为null。
-
依赖注入:尽可能使用构造函数注入而非服务获取模式。
-
错误处理:为服务获取添加适当的错误处理逻辑,提供有意义的错误信息。
-
生命周期管理:了解不同服务生命周期(Singleton、Scoped、Transient)的区别,根据需求选择合适的生命周期。
总结
在dotnet/extensions项目中实现AI函数调用时,正确处理IServiceProvider的传递是确保功能正常工作的关键。通过理解服务注册、传递机制和正确实现模式,开发者可以避免常见的服务获取问题,构建更健壮的AI功能集成。记住,服务的可用性取决于整个调用链的正确配置,从服务注册到最终调用的每个环节都需要正确设置。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00