在dotnet/extensions项目中正确使用IServiceProvider实现AI函数调用
理解IServiceProvider在AI函数调用中的作用
在dotnet/extensions项目中,IServiceProvider是依赖注入系统的核心接口,它负责提供应用程序所需的服务实例。当我们需要在AI函数调用中使用服务时,正确获取IServiceProvider实例至关重要。
常见问题分析
开发者经常遇到的一个典型问题是:在创建AI函数实例时,尝试通过AIFunctionArguments的Services属性获取服务,但总是返回null。这种情况通常发生在没有正确设置服务提供程序的情况下。
解决方案详解
要解决这个问题,我们需要理解整个服务传递链:
-
服务注册阶段:首先需要在应用程序构建时正确注册所需服务。例如,使用AddSingleton、AddScoped或AddTransient等方法注册ToolCallingProviderHttp服务。
-
服务传递机制:当使用UseFunctionInvocation中间件时,系统会自动从构建器中获取服务集合,并用这些服务构造FunctionInvokingChatClient实例。
-
调用链传递:FunctionInvokingChatClient会存储这些服务,并在调用InvokeAsync方法时将它们作为参数传递。
正确实现模式
以下是推荐的实现方式:
// 1. 首先确保在服务注册阶段正确配置
var builder = new HostBuilder()
.ConfigureServices(services =>
{
services.AddSingleton<ToolCallingProviderHttp>();
// 其他服务注册...
});
// 2. 在函数创建时使用正确的服务获取方式
var createAIFunctionInstance = (AIFunctionArguments args) =>
{
// 确保args.Services不为null
var toolProvider = args.Services?.GetService<ToolCallingProviderHttp>();
var instance = Activator.CreateInstance(classAssembly, toolProvider);
return instance;
};
最佳实践建议
-
服务验证:在使用服务前,始终检查IServiceProvider是否为null。
-
依赖注入:尽可能使用构造函数注入而非服务获取模式。
-
错误处理:为服务获取添加适当的错误处理逻辑,提供有意义的错误信息。
-
生命周期管理:了解不同服务生命周期(Singleton、Scoped、Transient)的区别,根据需求选择合适的生命周期。
总结
在dotnet/extensions项目中实现AI函数调用时,正确处理IServiceProvider的传递是确保功能正常工作的关键。通过理解服务注册、传递机制和正确实现模式,开发者可以避免常见的服务获取问题,构建更健壮的AI功能集成。记住,服务的可用性取决于整个调用链的正确配置,从服务注册到最终调用的每个环节都需要正确设置。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00