SUMO仿真工具中Manhattan教程配置文件编译错误解析
问题背景
在使用SUMO(Simulation of Urban MObility)交通仿真工具时,用户按照Manhattan教程步骤进行操作时遇到了配置文件编译错误。该错误发生在执行随机行程生成后,系统提示"attribute value expected"错误,导致仿真无法继续进行。
错误现象分析
用户在Windows 11系统下使用SUMO 1.22.0版本,按照教程生成flows.xml文件后,运行仿真时出现以下错误提示:
Error: attribute value expected
In file 'flows.xml'
At line/column 16/71.
错误指向flows.xml文件的第16行第71列位置。通过分析用户提供的文件内容,可以确认这是一个XML格式验证错误。
根本原因
经过深入分析,发现问题的根本原因在于自动生成的flows.xml文件中,车辆流(flow)元素的属性值没有使用引号包裹。具体表现为:
错误格式:
<flow id="0" begin="0" end="1" period="100" from="G3G2" departPos=random departSpeed=max/>
正确格式应为:
<flow id="0" begin="0" end="1" period="100" from="G3G2" departPos="random" departSpeed="max"/>
XML格式规范要求
在XML标准中,所有属性值必须使用引号(单引号或双引号)包裹,这是XML格式的基本要求。SUMO作为严格遵循XML标准的仿真工具,会严格执行这一规范。
解决方案
要解决此问题,可以采用以下两种方法之一:
-
手动修改:打开flows.xml文件,将所有类似
departPos=random
的属性修改为departPos="random"
的形式。 -
重新生成:检查randomTrips.py脚本的调用参数,确保在生成行程文件时正确指定了属性格式。
预防措施
为避免类似问题再次发生,建议:
- 在使用SUMO工具链生成XML文件时,仔细检查输出参数
- 在运行仿真前,先使用SUMO自带的XML验证工具检查文件格式
- 对于自动生成的文件,建立检查机制确保符合XML规范
深入理解
这个问题虽然看似简单,但反映了XML数据处理中的一个重要原则:严格遵循格式规范。在交通仿真领域,配置文件往往由多个工具链生成和处理,每个环节都可能引入格式问题。作为SUMO用户,理解这些底层规范有助于更快地定位和解决问题。
对于初学者来说,这类错误也是学习XML数据处理的好机会。建议新用户在遇到类似问题时,首先检查XML文件的基本结构是否符合规范,包括标签闭合、属性引号使用等基本要素。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









