CogVideo模型中的位置编码插值技术解析
位置编码在视频生成模型中的重要性
在CogVideo这类视频生成模型中,位置编码(Positional Encoding)是Transformer架构中不可或缺的组成部分。它负责为模型提供序列中各个元素的位置信息,弥补了Transformer本身不具备位置感知能力的缺陷。对于视频生成任务而言,合理的位置编码设计尤为重要,因为视频帧不仅包含空间维度(高度和宽度)的位置关系,还包含时间维度的顺序关系。
两种主要的位置编码方式
CogVideo项目中主要涉及两种位置编码实现方式:
-
传统的正弦-余弦位置编码(Sinusoidal Positional Embedding):这是Transformer原始论文中提出的方法,使用固定公式生成位置编码,具有良好的外推性。
-
旋转位置编码(RoPE, Rotary Position Embedding):一种相对较新的位置编码方式,通过旋转矩阵将位置信息融入注意力计算中,在长序列任务中表现优异。
渐进式训练中的位置编码处理
CogVideo采用了渐进式训练策略,即先在低分辨率数据上训练,然后逐步过渡到高分辨率。这种训练方式带来了一个关键问题:当输入分辨率变化时,如何处理位置编码?
对于传统的正弦-余弦位置编码,CogVideo团队采用了**插值(interpolation)**的方法。具体实现中,他们通过height_interpolation和width_interpolation参数来控制位置编码的缩放比例。这种处理方式与直接对位置网格进行插值在数学上是等价的,但实现上更为简洁高效。
插值与外推的技术选择
值得注意的是,在CogVideo的不同规模模型中,团队采用了不同的位置编码策略:
- 对于2B参数规模的模型,使用正弦-余弦位置编码并采用插值方法
- 对于更大规模的模型,则选择旋转位置编码(RoPE)并采用外推(extrapolation)方法
这种差异化的选择源于不同位置编码方式的特性以及模型规模带来的需求变化。旋转位置编码的外推能力更强,更适合处理大规模模型可能遇到的更长序列问题。
技术实现细节
在代码实现层面,位置编码的插值处理通过将原始位置索引除以插值系数来完成。这种方法实际上是对位置编码网格进行线性缩放,保持了位置关系的相对一致性。对于视频数据,这种处理需要同时在空间维度(高度、宽度)和时间维度上保持协调,确保模型能够正确理解视频帧间的时空关系。
总结
CogVideo在位置编码处理上的技术选择体现了对模型性能与训练效率的平衡考量。通过针对不同规模模型采用差异化的位置编码策略,既保证了较小模型的训练稳定性,又为大规模模型提供了更好的序列处理能力。这种渐进式、差异化的设计思路对于复杂视频生成任务尤为重要,也为其他时空序列建模任务提供了有价值的参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00