NLP Architect 开源项目教程
2024-09-24 11:53:28作者:裘旻烁
1. 项目介绍
NLP Architect 是由 Intel AI Lab 开发的一个开源 Python 库,旨在探索和优化自然语言处理(NLP)和自然语言理解(NLU)领域的最新深度学习技术和模型。该库提供了多种先进的 NLP 和 NLU 模型,以及优化算法,帮助研究人员和开发者快速集成和应用这些模型。
主要特点
- 核心 NLP 模型:包括词块化、命名实体识别、依存句法分析、意图提取、情感分类等。
- 创新 NLU 模型:如基于方面的情感分析(ABSA)、联合意图检测和槽填充、名词短语嵌入表示(NP2Vec)等。
- 优化技术:如量化 BERT(8bit)、知识蒸馏、稀疏和量化神经机器翻译(GNMT)等。
- 模型导向设计:支持从命令行训练和运行模型,提供 Python API 进行推理,并允许自定义训练和推理流程。
2. 项目快速启动
安装
推荐在新的 Python 环境中安装 NLP Architect,使用 Python 3.6+ 版本,并确保 pip、setuptools 和 h5py 为最新版本。
使用 pip 安装
pip install nlp-architect
从源码安装
git clone https://github.com/IntelLabs/nlp-architect.git
cd nlp-architect
pip install -e . # 以开发者模式安装
运行示例
安装完成后,可以通过以下命令运行提供的示例和解决方案:
pip install nlp-architect[all] # 安装所有依赖
3. 应用案例和最佳实践
案例1:基于方面的情感分析(ABSA)
ABSA 是一种高级的情感分析技术,能够识别文本中特定方面的情感倾向。NLP Architect 提供了 ABSA 模型,可以用于分析产品评论、社交媒体帖子等。
from nlp_architect.solutions.absa import AspectBasedSentimentAnalysis
# 初始化模型
absa = AspectBasedSentimentAnalysis()
# 示例文本
text = "The battery life of this laptop is great, but the screen quality is poor."
# 分析情感
result = absa.run(text)
print(result)
案例2:命名实体识别(NER)
NER 是 NLP 中的一个基本任务,用于识别文本中的命名实体(如人名、地名、组织名等)。NLP Architect 提供了高效的 NER 模型。
from nlp_architect.models.ner.ner_model import NERModel
# 初始化模型
ner_model = NERModel()
# 示例文本
text = "Barack Obama was born in Hawaii."
# 识别命名实体
entities = ner_model.predict(text)
print(entities)
4. 典型生态项目
TensorFlow 和 PyTorch
NLP Architect 基于 TensorFlow 和 PyTorch 等深度学习框架,这些框架提供了强大的计算能力和丰富的工具集,支持 NLP Architect 中的各种模型和优化技术。
Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的 NLP 工具包,提供了大量的预训练模型。NLP Architect 与 Transformers 库兼容,可以利用其预训练模型进行进一步的优化和应用。
Dynet
Dynet 是一个轻量级的深度学习框架,特别适合研究和开发新的神经网络模型。NLP Architect 也支持 Dynet,为开发者提供了更多的选择。
通过这些生态项目,NLP Architect 能够更好地与其他工具和库集成,提供更强大的功能和更广泛的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1