NLP Architect 开源项目教程
2024-09-24 01:46:49作者:裘旻烁
1. 项目介绍
NLP Architect 是由 Intel AI Lab 开发的一个开源 Python 库,旨在探索和优化自然语言处理(NLP)和自然语言理解(NLU)领域的最新深度学习技术和模型。该库提供了多种先进的 NLP 和 NLU 模型,以及优化算法,帮助研究人员和开发者快速集成和应用这些模型。
主要特点
- 核心 NLP 模型:包括词块化、命名实体识别、依存句法分析、意图提取、情感分类等。
- 创新 NLU 模型:如基于方面的情感分析(ABSA)、联合意图检测和槽填充、名词短语嵌入表示(NP2Vec)等。
- 优化技术:如量化 BERT(8bit)、知识蒸馏、稀疏和量化神经机器翻译(GNMT)等。
- 模型导向设计:支持从命令行训练和运行模型,提供 Python API 进行推理,并允许自定义训练和推理流程。
2. 项目快速启动
安装
推荐在新的 Python 环境中安装 NLP Architect,使用 Python 3.6+ 版本,并确保 pip、setuptools 和 h5py 为最新版本。
使用 pip 安装
pip install nlp-architect
从源码安装
git clone https://github.com/IntelLabs/nlp-architect.git
cd nlp-architect
pip install -e . # 以开发者模式安装
运行示例
安装完成后,可以通过以下命令运行提供的示例和解决方案:
pip install nlp-architect[all] # 安装所有依赖
3. 应用案例和最佳实践
案例1:基于方面的情感分析(ABSA)
ABSA 是一种高级的情感分析技术,能够识别文本中特定方面的情感倾向。NLP Architect 提供了 ABSA 模型,可以用于分析产品评论、社交媒体帖子等。
from nlp_architect.solutions.absa import AspectBasedSentimentAnalysis
# 初始化模型
absa = AspectBasedSentimentAnalysis()
# 示例文本
text = "The battery life of this laptop is great, but the screen quality is poor."
# 分析情感
result = absa.run(text)
print(result)
案例2:命名实体识别(NER)
NER 是 NLP 中的一个基本任务,用于识别文本中的命名实体(如人名、地名、组织名等)。NLP Architect 提供了高效的 NER 模型。
from nlp_architect.models.ner.ner_model import NERModel
# 初始化模型
ner_model = NERModel()
# 示例文本
text = "Barack Obama was born in Hawaii."
# 识别命名实体
entities = ner_model.predict(text)
print(entities)
4. 典型生态项目
TensorFlow 和 PyTorch
NLP Architect 基于 TensorFlow 和 PyTorch 等深度学习框架,这些框架提供了强大的计算能力和丰富的工具集,支持 NLP Architect 中的各种模型和优化技术。
Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的 NLP 工具包,提供了大量的预训练模型。NLP Architect 与 Transformers 库兼容,可以利用其预训练模型进行进一步的优化和应用。
Dynet
Dynet 是一个轻量级的深度学习框架,特别适合研究和开发新的神经网络模型。NLP Architect 也支持 Dynet,为开发者提供了更多的选择。
通过这些生态项目,NLP Architect 能够更好地与其他工具和库集成,提供更强大的功能和更广泛的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134