OpenZiti Ziti 1.5.0版本发布:网络边缘智能平台的重要更新
OpenZiti是一个开源的零信任网络平台,它通过内置的安全性和智能路由功能,为现代分布式应用提供安全连接解决方案。Ziti作为OpenZiti的核心组件,实现了零信任网络架构的关键功能。最新发布的1.5.0版本带来了一系列重要改进和功能增强。
路由终端文件格式标准化
在1.5.0版本中,路由终端配置文件的默认命名规范进行了调整。原先使用简单的"endpoints"作为文件名,现在更改为"endpoints.yml"以明确表明这是一个YAML格式的配置文件。这一变化体现了项目对配置管理规范化的重视。对于现有使用beta版高可用性(HA)代码的环境,可以通过在配置中显式指定路径来保持兼容性。
集群配置默认值优化
新版本对集群相关的两个关键参数进行了优化调整:
-
快照阈值(snapshotThreshold):从8192降低到500,这意味着系统会更频繁地创建状态快照,提高了系统恢复时的效率。
-
追踪日志数量(trailingLogs):从10240减少到500,这个参数控制保留的旧日志条目数量,用于同步对等节点而不是发送完整快照。
这些调整基于实际运行经验,在系统稳定性和性能之间取得了更好的平衡。
终端选择算法改进
Ziti在1.5.0版本中改进了终端选择时的成本计算机制。当服务拨号失败时,系统会为该终端增加失败成本,从而在后续选择时倾向于其他可用终端。新版本将固定每分钟5个信用值的恢复机制改为基于时间的指数增长模型:
min(10, 2 ^ (X/5))
其中X代表自上次失败以来的分钟数。这种算法能更智能地处理终端恢复,避免过于激进或保守的终端选择策略。
路由指标监控增强
1.5.0版本新增了四个关键指标,为网络流量控制提供了更深入的可见性:
- 本地窗口阻塞率:记录因本地窗口满导致的阻塞情况
- 远程窗口阻塞率:记录因远程接收缓冲区满导致的阻塞
- 阻塞时间:跟踪终端处于阻塞状态的总时长
- 边缘数据队列处理时间:监控边缘路由处理入站数据负载的时间
这些指标帮助运维人员更准确地诊断网络性能瓶颈。其中边缘数据队列指标默认关闭,可通过配置启用。
配置项更新
新增了两个路由指标相关配置:
- 事件队列大小:控制使用事件队列的容量,默认256,防止指标收集影响正常数据传输
- 启用数据延迟指标:布尔值,控制是否收集边缘数据队列处理时间指标
其他改进与修复
1.5.0版本还包括多项组件更新和问题修复,涉及身份在线状态处理、恢复操作稳定性、CLI布局选择机制等多个方面。特别值得注意的是:
- 增强了外部JWT签名验证功能
- 修复了控制器在线状态显示问题
- 改进了
ziti router run --extend命令的功能 - 优化了API客户端注册操作
这些改进共同提升了平台的稳定性、安全性和易用性,使OpenZiti Ziti能够更好地满足企业级零信任网络的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00