Apache Arrow DataFusion中Duration类型聚合性能优化解析
2025-05-31 12:44:01作者:苗圣禹Peter
Apache Arrow DataFusion项目近期针对Duration类型的最小值/最大值聚合函数进行了性能优化。本文将深入分析这一优化背后的技术细节及其实现原理。
背景与挑战
在数据处理领域,时间间隔(Duration)类型的聚合操作是常见需求。DataFusion最初通过基础的Accumulator接口实现了对Duration类型的min/max聚合支持,但这种实现方式在处理大规模数据分组时存在性能瓶颈。
技术方案
DataFusion提供了更高效的GroupsAccumulator接口专门用于优化分组聚合场景。与基础Accumulator相比,GroupsAccumulator能够:
- 批量处理分组数据,减少函数调用开销
- 利用向量化执行特性
- 更高效地管理内存和CPU缓存
实现细节
优化实现主要涉及三个关键步骤:
- 类型注册:将Duration类型添加到min/max聚合函数支持的类型列表中
- 累加器实例化:为Duration类型创建专用的GroupsAccumulator实现
- 测试验证:扩展测试用例确保功能正确性和性能提升
技术优势
通过这种优化,DataFusion在处理Duration类型聚合时能够获得显著的性能提升,特别是在以下场景:
- 大规模数据集
- 高基数分组键
- 复杂聚合查询
实际应用示例
在SQL查询中,我们可以轻松创建Duration类型并进行聚合操作。例如计算时间序列数据中各时间点与当前时间的差值统计:
-- 创建包含时间序列的表
CREATE TABLE time_series AS
SELECT unnest(generate_series(now(), now() + interval '1 year', interval '1 day')) AS ts;
-- 计算各时间点与当前时间差的统计信息
SELECT
MIN(now() - ts) AS min_duration,
MAX(now() - ts) AS max_duration,
AVG(now() - ts) AS avg_duration
FROM time_series;
这种优化使得类似查询的执行效率得到显著提升,为时间序列分析等场景提供了更好的性能支持。
总结
DataFusion通过对Duration类型聚合的优化,展示了其在查询执行引擎性能调优方面的持续改进。这种针对特定数据类型的底层优化,是构建高效数据分析系统的重要组成部分,也为开发者提供了性能优化的良好范例。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1