afrog项目中的CEL表达式引擎崩溃问题分析
问题现象
在afrog项目的最新版本中,当用户使用-T url.txt -epf epoc.txt -oob dnslogcn -o result1.html命令运行数小时后,程序会异常终止。从错误堆栈中可以观察到,问题主要发生在CEL(Common Expression Language)表达式引擎的执行过程中。
技术背景
CEL是Google开发的一种表达式语言,用于在运行时评估表达式。在afrog项目中,CEL被用于动态执行一些检测逻辑。从堆栈信息可以看出,问题发生在github.com/google/cel-go这个Go语言实现的CEL库中。
问题根源分析
通过堆栈跟踪可以识别出几个关键点:
-
并发问题:错误堆栈中出现了大量goroutine(Go语言的轻量级线程),编号达到了3361579,这表明程序在高并发环境下运行。
-
资源耗尽:在多线程和高并发场景下,CEL引擎创建了大量环境(Env)实例,最终导致系统资源耗尽。
-
CEL初始化问题:堆栈中反复出现
NewCustomEnv、NewEnv等初始化函数,表明CEL环境的创建可能没有正确复用或存在内存泄漏。
解决方案
针对这一问题,afrog项目维护者提出了以下建议:
-
使用智能模式:通过添加
-smart参数运行程序,该模式可能会限制并发数量或优化资源使用。 -
减少目标数量:将扫描目标分批处理,避免一次性处理过多目标导致资源紧张。
-
优化CEL使用:在代码层面,应考虑复用CEL环境而不是频繁创建新实例,或者实现资源回收机制。
技术启示
这个问题给开发者提供了几个重要启示:
-
并发控制:在高并发应用中,必须合理控制goroutine数量,避免无限制创建。
-
资源管理:对于像CEL这样的复杂引擎,需要注意实例的创建和销毁策略。
-
错误处理:应该为长时间运行的任务添加更健壮的错误恢复机制。
-
性能优化:对于安全扫描这类资源密集型任务,需要平衡扫描速度和系统负载。
总结
afrog项目中出现的CEL引擎崩溃问题,本质上是高并发环境下资源管理不当导致的。通过合理控制并发量、优化资源使用策略,可以有效避免这类问题的发生。这也提醒开发者在使用第三方库时,需要充分理解其性能特性和资源消耗模式,特别是在高并发场景下的表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00