Pentest-Cheatsheets 项目使用教程
1. 项目目录结构及介绍
Pentest-Cheatsheets 项目是一个渗透测试备忘单的集合,包含了多个子目录,每个子目录对应不同的渗透测试领域或技术。以下是项目的目录结构及其介绍:
Pentest-Cheatsheets/
├── _static/
│ └── binaries/
├── exploits/
├── mobile-testing/
├── password-attacks/
├── privilege-escalation/
├── services/
├── web-applications/
├── windows/
├── LICENSE
├── Makefile
├── README.md
├── cheatsheets.rst
├── checklist.rst
├── conf.py
├── index.rst
├── todo.rst
└── useful-links.rst
目录介绍
-
_static/: 包含静态文件,如二进制文件。
- binaries/: 存放与渗透测试相关的二进制文件。
-
exploits/: 包含与漏洞利用相关的备忘单。
-
mobile-testing/: 包含与移动设备测试相关的备忘单。
-
password-attacks/: 包含与密码攻击相关的备忘单。
-
privilege-escalation/: 包含与权限提升相关的备忘单。
-
services/: 包含与服务测试相关的备忘单。
-
web-applications/: 包含与Web应用程序测试相关的备忘单。
-
windows/: 包含与Windows系统测试相关的备忘单。
-
LICENSE: 项目的许可证文件。
-
Makefile: 用于构建项目的Makefile文件。
-
README.md: 项目的介绍和使用说明。
-
cheatsheets.rst: 备忘单的主文件。
-
checklist.rst: 渗透测试的检查清单。
-
conf.py: Sphinx文档生成器的配置文件。
-
index.rst: 项目的主索引文件。
-
todo.rst: 项目的待办事项列表。
-
useful-links.rst: 有用的链接和资源列表。
2. 项目的启动文件介绍
Pentest-Cheatsheets 项目的主要启动文件是 index.rst,它是Sphinx文档生成器的入口文件。通过这个文件,可以生成整个项目的HTML文档。
启动步骤
-
安装依赖: 首先需要安装Sphinx和Read The Docs主题。
pip install sphinx sphinx_rtd_theme -
生成文档: 使用Makefile来生成HTML文档。
make clean && make html -
查看文档: 生成的HTML文档位于
_build/html/目录下,可以通过浏览器打开index.html文件查看。
3. 项目的配置文件介绍
Pentest-Cheatsheets 项目的主要配置文件是 conf.py,它用于配置Sphinx文档生成器的行为。以下是一些关键配置项的介绍:
conf.py 配置项
-
extensions: 配置Sphinx使用的扩展模块。
extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] -
templates_path: 指定模板文件的路径。
templates_path = ['_templates'] -
exclude_patterns: 指定在生成文档时要排除的文件或目录。
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] -
html_theme: 指定使用的HTML主题。
html_theme = 'sphinx_rtd_theme' -
html_static_path: 指定静态文件的路径。
html_static_path = ['_static']
通过这些配置项,可以自定义Sphinx文档生成器的行为,以满足项目的需求。
以上是 Pentest-Cheatsheets 项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00