Pentest-Cheatsheets 项目使用教程
1. 项目目录结构及介绍
Pentest-Cheatsheets 项目是一个渗透测试备忘单的集合,包含了多个子目录,每个子目录对应不同的渗透测试领域或技术。以下是项目的目录结构及其介绍:
Pentest-Cheatsheets/
├── _static/
│ └── binaries/
├── exploits/
├── mobile-testing/
├── password-attacks/
├── privilege-escalation/
├── services/
├── web-applications/
├── windows/
├── LICENSE
├── Makefile
├── README.md
├── cheatsheets.rst
├── checklist.rst
├── conf.py
├── index.rst
├── todo.rst
└── useful-links.rst
目录介绍
-
_static/: 包含静态文件,如二进制文件。
- binaries/: 存放与渗透测试相关的二进制文件。
-
exploits/: 包含与漏洞利用相关的备忘单。
-
mobile-testing/: 包含与移动设备测试相关的备忘单。
-
password-attacks/: 包含与密码攻击相关的备忘单。
-
privilege-escalation/: 包含与权限提升相关的备忘单。
-
services/: 包含与服务测试相关的备忘单。
-
web-applications/: 包含与Web应用程序测试相关的备忘单。
-
windows/: 包含与Windows系统测试相关的备忘单。
-
LICENSE: 项目的许可证文件。
-
Makefile: 用于构建项目的Makefile文件。
-
README.md: 项目的介绍和使用说明。
-
cheatsheets.rst: 备忘单的主文件。
-
checklist.rst: 渗透测试的检查清单。
-
conf.py: Sphinx文档生成器的配置文件。
-
index.rst: 项目的主索引文件。
-
todo.rst: 项目的待办事项列表。
-
useful-links.rst: 有用的链接和资源列表。
2. 项目的启动文件介绍
Pentest-Cheatsheets 项目的主要启动文件是 index.rst,它是Sphinx文档生成器的入口文件。通过这个文件,可以生成整个项目的HTML文档。
启动步骤
-
安装依赖: 首先需要安装Sphinx和Read The Docs主题。
pip install sphinx sphinx_rtd_theme -
生成文档: 使用Makefile来生成HTML文档。
make clean && make html -
查看文档: 生成的HTML文档位于
_build/html/目录下,可以通过浏览器打开index.html文件查看。
3. 项目的配置文件介绍
Pentest-Cheatsheets 项目的主要配置文件是 conf.py,它用于配置Sphinx文档生成器的行为。以下是一些关键配置项的介绍:
conf.py 配置项
-
extensions: 配置Sphinx使用的扩展模块。
extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] -
templates_path: 指定模板文件的路径。
templates_path = ['_templates'] -
exclude_patterns: 指定在生成文档时要排除的文件或目录。
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] -
html_theme: 指定使用的HTML主题。
html_theme = 'sphinx_rtd_theme' -
html_static_path: 指定静态文件的路径。
html_static_path = ['_static']
通过这些配置项,可以自定义Sphinx文档生成器的行为,以满足项目的需求。
以上是 Pentest-Cheatsheets 项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0126
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00