Angular CLI 20.0.0中Karma测试与动态导入的兼容性问题解析
问题背景
在Angular CLI 20.0.0-next.1版本中,开发者在使用新的应用构建器(application builder)进行单元测试时,发现了一个与动态导入(dynamic import)相关的重要兼容性问题。当测试代码中使用fakeAsync测试包含动态导入的组件时,测试会失败,而同样的测试在使用传统webpack构建器时却能正常通过。
问题重现
让我们通过一个典型场景来理解这个问题:
- 创建一个包含动态导入的组件:
export class AppComponent {
title = 'dynamic-import-esbuild';
update() {
import('./something').then((module) => {
this.title = module.title;
});
}
}
- 编写对应的测试用例:
it('should update title', fakeAsync(() => {
const compiled = fixture.nativeElement;
compiled.querySelector('button')?.dispatchEvent(new Event('click'));
tick();
expect(fixture.componentInstance.title).toBe('something');
}));
在使用新的esbuild构建器时,这个测试会失败,断言expect(fixture.componentInstance.title).toBe('something')不成立,因为动态导入的回调没有被执行。
技术原理分析
这个问题的根本原因在于Zone.js对Promise的拦截机制:
-
webpack构建器:使用自己的模块系统,生成的Promise可以被Zone.js正确拦截,因此测试中的
tick()能够等待异步操作完成。 -
esbuild构建器:使用原生的ES模块导入(native ESM import),其内部使用了一种不同的Promise实现,这种Promise无法被Zone.js拦截。因此,在测试环境中,
tick()无法等待这种原生的动态导入完成。
解决方案
对于需要在测试中使用动态导入的场景,Angular团队推荐使用PendingTasksAPI,这与服务器端渲染(SSR)中处理异步任务的方式类似。具体实现方式如下:
- 在组件中注入
PendingTasks服务:
import { PendingTasks } from '@angular/core';
constructor(private pendingTasks: PendingTasks) {}
- 修改动态导入逻辑:
update() {
const task = this.pendingTasks.add();
import('./something').then((module) => {
this.title = module.title;
this.pendingTasks.remove(task);
});
}
- 在测试中,可以使用
flush或whenStable来等待任务完成。
最佳实践建议
-
测试策略:对于包含动态导入的组件,考虑将其拆分为更小的单元进行测试,或者使用集成测试而非单元测试。
-
代码设计:将动态导入的逻辑提取到服务中,使组件保持简单,便于测试。
-
版本兼容性:在升级到Angular CLI 20时,特别注意测试用例中动态导入相关的部分,可能需要调整测试策略。
总结
这个问题揭示了现代JavaScript模块系统与传统测试工具之间的兼容性挑战。随着Angular生态向esbuild等现代构建工具迁移,开发者需要了解这些底层变化对测试策略的影响。通过使用Angular提供的PendingTasksAPI,可以有效地解决这类异步测试问题,确保测试的可靠性和准确性。
对于正在迁移到Angular CLI 20的项目,建议在早期阶段就对包含动态导入的测试进行验证,确保测试策略与新构建器兼容,避免后期出现意外的测试失败。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00