Micrometer 1.15.0-M3 版本发布:监控指标库的重要更新
Micrometer 是一个为 Java 应用提供指标收集功能的工具库,它作为应用指标门面,能够对接多种监控系统如Prometheus、Atlas、Datadog等。本次发布的1.15.0-M3版本带来了多项功能增强和问题修复,进一步提升了开发者在应用监控方面的体验。
核心功能增强
基于方法结果的标签创建
新版本对TimedAspect和CountedAspect进行了扩展,现在支持根据方法的执行结果动态创建标签。这一改进使得开发者能够更灵活地对不同结果状态的方法调用进行分类监控。例如,可以轻松区分成功和失败的调用,为业务监控提供了更细粒度的支持。
OTLP指标发送器API优化
OpenTelemetry协议(OTLP)是现代可观测性领域的重要标准。Micrometer在此版本中改进了OTLPMetricsSender接口,使其更加易用和灵活。这一变化为开发者提供了更好的集成体验,特别是在云原生和分布式系统环境中。
仪表级指数直方图配置
新版本支持在仪表级别配置指数直方图,这是一个重要的监控功能增强。指数直方图特别适合处理长尾分布的数据,能够更精确地表示数据分布情况。开发者现在可以根据具体需求,为不同的指标单独配置直方图参数,获得更精确的监控数据。
问题修复
Log4j2集成问题
修复了Log4j2Metrics与编程方式添加LoggerConfig不兼容的问题。这一修复确保了无论日志配置是通过配置文件还是编程方式添加,都能被正确监控。
分布值计算异常
解决了当分布值的计数为0时,平均值却显示为非零值的异常情况。这一修复保证了指标计算的准确性,避免了可能导致的监控数据误解。
依赖项升级
Micrometer始终关注依赖生态系统的健康发展,本次版本更新了多个关键依赖:
- Google认证库升级至1.33.1版本,增强了安全性
- Google云监控SDK更新至3.60.0,提供更多云监控功能
- Prometheus指标库升级至1.3.6,包含最新的监控协议支持
- AWS CloudWatch SDK更新至2.30.32,优化了云服务集成
这些依赖升级不仅带来了性能改进,还修复了已知的问题,为生产环境提供了更可靠的保障。
总结
Micrometer 1.15.0-M3版本在功能丰富性和稳定性方面都有显著提升。新引入的基于方法结果的标签创建功能为业务监控开辟了新思路,OTLP协议的优化则顺应了云原生监控的发展趋势。同时,多项问题修复确保了监控数据的准确性。对于正在使用或考虑采用Micrometer的Java开发者来说,这个版本值得关注和评估升级。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00