Kamal部署工具与Earthly构建系统的集成实践
2025-05-18 16:52:39作者:谭伦延
在现代化应用部署流程中,构建和部署环节的分离已经成为一种最佳实践。本文将探讨如何将Earthly构建系统与Kamal部署工具进行有效集成,实现构建与部署的解耦。
Earthly与Kamal的基本原理
Earthly是一个基于BuildKit的构建工具,它通过声明式语法定义构建流程,并提供了强大的缓存机制。而Kamal是一个面向Rails应用的部署工具,默认使用Dockerfile进行镜像构建。
集成挑战
当尝试将两者集成时,会遇到一个核心矛盾:Kamal期望直接使用Dockerfile进行构建,而Earthly则采用自己的构建定义方式。这种差异导致无法直接通过单一命令实现两者的无缝衔接。
解决方案
方案一:利用Kamal的跳过构建功能
- 首先使用Earthly独立完成镜像构建
- 按照Kamal预期的命名规则为镜像打标签
- 在Kamal配置中设置
skip_push: true - 使用
kamal deploy --skip-push命令进行部署
这种方法实现了构建与部署的完全分离,适合已经在CI流程中使用Earthly的团队。
方案二:利用BuildKit原生缓存
Kamal实际上支持BuildKit作为底层构建引擎,这意味着Earthly构建的缓存层理论上可以被复用。可以通过配置Kamal的builder缓存选项来优化构建性能。
最佳实践建议
- 构建与部署分离:建议在CI流水线中完成所有构建和测试工作,仅将验证通过的镜像用于部署
- 标签一致性:确保Earthly构建的镜像标签与Kamal预期格式一致
- 缓存共享:如果使用相同的基础设施,可以配置共享的BuildKit缓存
- 环境一致性:虽然构建与部署分离,但仍需确保构建环境与生产环境的一致性
总结
通过合理的配置和工作流设计,Earthly和Kamal可以很好地协同工作。关键在于理解两者的设计理念和工作原理,找到适合团队工作流程的集成点。构建与部署的分离不仅能够提高流程的灵活性,还能更好地实现质量门禁和安全控制。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178