MedicalGPT项目预训练过程中的CUDA设备端断言错误分析与解决
问题现象
在使用MedicalGPT项目进行ChatGLM3模型预训练时,用户报告在运行pretraining.py脚本过程中遇到了"RuntimeError: CUDA error: device-side assert triggered"错误。该错误通常在训练进行到第134步时出现,而在此之前相同的参数和数据集配置能够正常运行。
错误分析
CUDA设备端断言触发错误通常表明在GPU执行过程中发生了某种异常情况。根据经验,这类错误可能由以下几个原因导致:
-
显存不足:这是最常见的原因之一。当模型或数据需要的显存超过GPU可用显存时,会触发此类错误。
-
CUDA与PyTorch版本不兼容:深度学习框架与CUDA驱动版本之间的不匹配可能导致各种运行时错误。
-
数据异常:数据集中存在异常样本,如长度超长的序列,可能导致显存需求突然增加。
-
模型配置问题:某些模型参数设置不当可能导致计算过程中出现非法值。
解决方案
针对MedicalGPT项目中出现的这一问题,可以采取以下解决措施:
-
调整批次大小:即使显存看似充足(如用户使用的两张48GB GPU),也应尝试进一步减小batch_size参数,观察是否能解决问题。
-
检查数据质量:对训练数据进行全面检查,特别是关注序列长度分布。可以添加数据预处理步骤,过滤或截断过长的序列。
-
验证环境配置:确保PyTorch版本与CUDA版本完全兼容。建议使用官方推荐的版本组合,并考虑创建干净的虚拟环境重新安装依赖。
-
模型选择建议:值得注意的是,ChatGLM3是经过RLHF(强化学习人类反馈)对齐的模型,可能不适合直接用于预训练。建议考虑使用更适合预训练的基础模型,如Yi-base模型。
-
系统重启:有时简单的系统重启可以解决临时的CUDA状态异常问题,这可能与GPU驱动或CUDA上下文管理有关。
预防措施
为了避免类似问题再次发生,建议:
- 在正式训练前进行小规模测试运行
- 实现完善的数据验证和预处理流程
- 监控训练过程中的显存使用情况
- 保持训练环境的稳定性,避免频繁变更依赖版本
通过以上分析和解决方案,开发者应该能够有效解决MedicalGPT项目预训练过程中遇到的CUDA设备端断言错误问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









