RF-DETR模型训练中的数据分割与增强策略
2025-07-06 00:27:48作者:袁立春Spencer
数据集分割的重要性
在目标检测模型的训练过程中,合理的数据集分割对于模型性能评估至关重要。RF-DETR作为基于Transformer架构的检测模型,其训练过程同样需要遵循机器学习中的标准实践,即将数据集划分为训练集、验证集和测试集。
小规模数据集的处理策略
当面对数据量有限的情况时,可以采用以下策略:
-
比例分割法:将数据集按照8:1:1的比例进行分割,即80%用于训练,10%用于验证,10%用于测试。这种方法适用于数据量相对充足的情况。
-
最小样本法:当数据量极少时,可以从训练集中手动选取少量样本(如1-2张图像及其对应标注文件)作为验证集和测试集。这种方法虽然简单,但在数据极度匮乏的情况下也不失为一种可行方案。
数据增强技术
为了克服数据量不足的问题,RF-DETR模型内置了数据增强功能,主要包括:
- 随机裁剪和缩放
- 颜色空间变换
- 图像翻转和旋转
- 噪声添加等
这些增强操作在模型训练过程中实时应用,能够有效增加数据的多样性,提高模型的泛化能力。具体实现位于模型的transforms模块中。
使用Supervision库进行数据集分割
对于COCO格式的数据集,推荐使用Supervision库中的DetectionDataset类进行便捷的数据分割操作。该方法提供了简单易用的API:
import supervision as sv
# 加载原始数据集
ds = sv.DetectionDataset.from_coco(
images_directory_path="path/to/images",
annotations_path="path/to/annotations.json"
)
# 分割数据集
ds_train, ds = ds.split(split_ratio=0.8, shuffle=True)
ds_valid, ds_test = ds.split(split_ratio=0.5, shuffle=True)
这种方法不仅操作简单,而且保证了分割过程的随机性和可重复性。
实践建议
- 在数据量允许的情况下,尽量保持验证集和测试集的独立性
- 对于小数据集,可以适当增加数据增强的强度
- 定期评估模型在验证集上的表现,防止过拟合
- 最终模型性能应在独立的测试集上进行评估
通过合理的数据分割和增强策略,即使在数据量有限的情况下,也能充分发挥RF-DETR模型的性能潜力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19