X-AnyLabeling中自定义YOLOv8-Pose模型的关键点标注问题解析
2025-06-08 08:56:12作者:段琳惟
背景介绍
在计算机视觉领域,姿态估计是一项重要的任务,它需要同时检测目标物体的位置和关键点信息。X-AnyLabeling作为一款强大的自动标注工具,内置了YOLOv8-Pose模型的支持,可以方便地完成目标检测和关键点标注工作。
问题描述
在使用自定义YOLOv8-Pose模型进行自动标注时,开发者遇到了两个主要的技术问题:
-
输出维度不匹配问题:原始YOLOv8-Pose模型的输出维度为56(4个边界框坐标+1个置信度分数+17个关键点坐标+17个关键点分数),而自定义模型的输出维度为13(4个边界框坐标+1个置信度分数+4个关键点坐标)。
-
关键点预测不准确问题:修改代码后,虽然解决了维度问题,但发现部分关键点总是预测错误,且位置相对固定。
技术分析与解决方案
输出维度适配问题
当使用自定义模型时,输出维度的改变需要相应修改标注逻辑。原始代码假设每个关键点包含x、y坐标和置信度分数三个值,而自定义模型只输出x、y坐标两个值。
解决方案是修改关键点处理逻辑:
- 将间隔(interval)从3改为2
- 移除关键点置信度分数的检查
- 确保标签(label)转换为字符串类型
关键点预测异常问题
从开发者提供的截图可以看出:
- 红色和绿色关键点预测准确
- 蓝色和紫色关键点位置错误且相对固定
可能原因包括:
- 模型训练不足,对某些关键点的特征学习不充分
- 关键点坐标归一化处理存在问题
- 后处理逻辑中对关键点的约束条件不当
建议的排查步骤:
- 单独使用ONNX Runtime测试模型,确认是模型问题还是标注工具问题
- 检查关键点坐标是否经过正确的反归一化处理
- 验证模型输出是否符合预期分布
最佳实践建议
- 模型验证:在集成到X-AnyLabeling前,先用独立脚本验证模型输出
- 渐进式修改:对标注逻辑的修改应逐步进行,每次只修改一个变量
- 可视化调试:在关键处理步骤添加可视化输出,便于定位问题
- 模型优化:如果确定是模型问题,应考虑增加训练数据或调整损失函数
总结
在使用X-AnyLabeling进行自定义模型集成时,开发者需要充分理解模型输出格式与工具处理逻辑的对应关系。对于姿态估计任务,特别要注意关键点坐标的处理方式和边界条件的检查。通过系统性的问题分析和逐步验证,可以有效解决标注过程中的各种技术挑战。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137