Fuel Core项目中的TxPool V2架构改进解析
2025-04-30 03:04:41作者:柯茵沙
引言
Fuel Core作为Fuel区块链的核心实现,其交易池(TxPool)模块负责管理待处理交易。随着网络规模扩大和交易量增长,原有交易池架构暴露出若干性能瓶颈和功能缺陷。本文将深入分析Fuel Core团队对TxPool模块的重大重构——TxPool V2的技术细节与设计理念。
原有架构的问题
Fuel Core初始版本的交易池在长期运行中暴露了五个核心问题:
- 内存占用过高:随着交易堆积,内存消耗呈线性增长,影响节点稳定性
- 无效交易处理不足:对已失效交易缺乏及时清理机制
- 依赖关系管理缺陷:交易间依赖关系处理不够高效
- 竞争条件风险:并发场景下存在数据竞争隐患
- 监控能力薄弱:缺乏细粒度的性能指标收集
这些问题在交易高峰期可能导致节点性能下降甚至服务中断,严重制约网络吞吐量。
V2架构设计原则
新版本交易池遵循三个核心设计原则:
- 分层架构:将交易处理流程划分为接收、验证、排序等明确层次
- 资源隔离:不同类型交易(如普通转账与合约调用)使用独立处理通道
- 惰性清理:对无效交易采用延迟回收策略,避免即时处理开销
关键技术改进
内存管理优化
引入分片式存储结构,将交易按特征(如发送者、类型)分布到不同内存区域。配合LRU(最近最少使用)淘汰算法,当内存达到阈值时自动清理最久未使用的交易。
依赖关系引擎
重新设计交易依赖图(DAG)表示方式:
- 顶点压缩:将相同发送者的连续交易合并为超级节点
- 增量更新:仅重新计算受影响子图的拓扑排序
- 并行验证:利用多核CPU并行验证无依赖关系的交易批次
并发控制模型
采用读写锁优化的线程安全设计:
- 高频操作用乐观锁
- 批量处理用悲观锁
- 引入无锁数据结构处理指标收集
监控体系增强
新增四类实时指标:
- 各阶段处理延迟百分位值
- 内存使用热力图
- 依赖图复杂度指标
- 验证失败分类统计
性能对比
内部测试数据显示V2版本在关键指标上显著提升:
- 内存占用减少40-60%
- 峰值吞吐量提高3倍
- 99%尾延迟降低至原来的1/5
- 无效交易清理开销降低90%
实施策略
重构采用分阶段上线方案:
- 首先部署影子模式运行,双池对比验证
- 然后开放为可配置选项
- 最终完全替换旧实现
这种渐进式部署最大限度降低了升级风险。
未来方向
TxPool V2为后续扩展奠定基础,规划中的功能包括:
- 基于机器学习的交易优先级预测
- 跨分片交易协调
- 零知识证明验证集成
结语
Fuel Core的TxPool V2重构展示了区块链基础设施如何通过系统级优化应对规模挑战。这种架构演进不仅解决了当前痛点,更为网络未来的高性能需求做好了准备,体现了Fuel团队对技术卓越的持续追求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212