MediaPipe项目中Holistic模型的手部关键点绘制问题解析
问题背景
在使用MediaPipe的Holistic模型进行手部检测时,开发者遇到了一个常见的API调用错误。当尝试使用draw_landmarks()函数绘制手部关键点时,系统抛出AttributeError: 'NormalizedLandmark' object has no attribute 'landmark'异常。
错误原因分析
这个问题的根源在于开发者混淆了MediaPipe新旧版本API的使用方式。具体表现为:
-
API版本不匹配:开发者使用的是MediaPipe的旧版(legacy)Holistic解决方案,但代码编写方式与新版本API不兼容。
-
参数传递错误:
draw_landmarks()函数期望接收的是landmark_pb2.NormalizedLandmarkList类型的参数,但实际传递的是单个NormalizedLandmark对象。 -
循环结构不当:在遍历手部关键点时,代码结构没有正确处理Holistic模型返回的数据结构。
技术细节解析
MediaPipe的Holistic模型在处理图像后会返回一个包含多个部分检测结果的对象:
- 新版API返回的结构更加清晰,分离了面部、手部和姿势的关键点
- 旧版API返回的是一个复合结构,需要特别注意数据访问方式
在绘制关键点时,正确的做法应该是:
- 首先获取完整的手部关键点列表
- 然后将整个列表传递给绘制函数
- 而不是逐个关键点传递
解决方案建议
对于遇到类似问题的开发者,建议采取以下解决方案:
-
升级到新版API:MediaPipe从0.10.10版本开始提供了全新的Holistic Task API,建议迁移到新版本。
-
修改绘制代码:如果暂时需要使用旧版API,应调整绘制代码的结构:
if results.left_hand_landmarks:
# 直接传递整个关键点列表
mp_drawing.draw_landmarks(frame, results.left_hand_landmarks, mp_hands.HAND_CONNECTIONS)
# 处理单个关键点
keypoint_pos = []
for landmark in results.left_hand_landmarks.landmark:
x = landmark.x * frame.shape[1]
y = landmark.y * frame.shape[0]
keypoint_pos.append((x, y))
版本迁移注意事项
从旧版Holistic解决方案迁移到新版Task API时,开发者需要注意:
- 导入路径的变化
- 初始化方式的不同
- 结果数据结构的差异
- 绘制函数的参数要求
新版API提供了更清晰的接口文档和更稳定的性能表现,建议开发者尽快完成迁移。
总结
这个问题典型地展示了API版本演进过程中可能遇到的兼容性问题。理解MediaPipe数据结构的设计理念和不同版本间的差异,是避免此类错误的关键。对于计算机视觉和姿态估计领域的开发者,掌握这些细节将有助于构建更稳定的应用程序。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00