Orval v7.5.0 版本发布:全面优化与功能增强
Orval 是一个强大的 OpenAPI/Swagger 客户端代码生成工具,能够根据 API 规范自动生成类型安全的客户端代码。它支持多种前端框架和库,包括 React、Vue、Angular 等,并提供了丰富的配置选项来满足不同项目的需求。最新发布的 v7.5.0 版本带来了一系列重要的改进和新特性,进一步提升了开发体验和代码质量。
核心功能优化
在核心功能方面,v7.5.0 版本进行了多项重要改进:
-
数组类型模式组合:现在能够正确处理数组类型的模式组合,确保生成的类型定义更加准确。
-
必填属性处理:改进了 allOf 对象中必填属性的导出方式,确保生成的类型定义包含所有必需的属性。
-
参数计数处理:优化了自定义实例返回 useCallback 时的参数计数处理,避免了潜在的错误。
-
操作生成逻辑:修复了当操作具有多个标签时可能生成重复操作的问题,确保每个操作只生成一次。
-
枚举属性处理:改进了原生枚举属性的处理方式,使用
keyof typeof语法来确保类型安全。
Hono 客户端增强
针对 Hono 客户端,v7.5.0 版本引入了多项改进:
-
自定义验证器:新增了
hono.validator选项,允许开发者自定义验证逻辑,提供了更大的灵活性。 -
验证器导入优化:减少了不必要的
zValidator导入,使生成的代码更加简洁高效。 -
复合路由生成:新增了生成复合路由的能力,使得在 Hono 中组织和管理路由更加方便。
-
标签模式优化:在标签模式下移除了不必要的手柄导入,减少了代码冗余。
Mock 和测试改进
在 Mock 和测试方面,v7.5.0 版本也进行了多项优化:
-
MSW 处理改进:正确支持整数枚举的处理,并简化了组合逻辑,使 Mock 数据更加准确。
-
类型导入优化:避免了值和类型的重复导入,提高了代码的可读性和维护性。
-
Mock 标量值:确保
getMockScalar尊重 int64 格式的自定义覆盖,使 Mock 数据更加符合实际场景。 -
MSW 索引文件:在拆分标签模式下创建导出 MSW 的索引文件,方便管理和使用 Mock 服务。
其他重要改进
-
参数序列化文档:更新了参数序列化的相关文档,帮助开发者更好地理解和使用这一功能。
-
Fetch 客户端增强:改进了当 body 不存在时的错误处理,并确保
responseDataType不为空,提高了客户端的健壮性。 -
查询库修复:解决了在使用自定义 mutation 时可能破坏
TData类型检查的回归问题。 -
类型导出:现在可以从
@orval/core导出类型,方便在其他地方重用。 -
模型名称净化:新增了模型名称的净化功能,确保生成的代码更加规范和可读。
-
类型排序修复:移除了可能导致问题的生成类型排序,确保生成的代码更加稳定。
总结
Orval v7.5.0 版本通过一系列的核心优化、Hono 客户端增强和 Mock 测试改进,进一步提升了代码生成的质量和开发体验。这些改进不仅解决了多个已知问题,还引入了新的功能特性,使 Orval 成为一个更加强大和可靠的 API 客户端生成工具。无论是对于新项目还是现有项目的升级,v7.5.0 版本都值得开发者考虑采用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00