Apache Pulsar BrokerRegistryMetadataStoreIntegrationTest 测试稳定性问题分析
问题背景
在 Apache Pulsar 项目中,BrokerRegistryMetadataStoreIntegrationTest 测试类中的 cleanup 方法近期频繁出现稳定性问题。该测试主要用于验证 Broker 注册表元数据存储的集成功能,但在测试清理阶段经常出现 Broker 关闭时间过长的问题,导致测试失败。
问题现象
测试失败的主要表现为 Broker 关闭操作耗时过长,超过了预设的时间阈值。从日志中可以观察到,Broker 关闭过程有时会耗时超过 60 秒,远高于正常情况下的预期时间。典型的错误信息为:"Broker took 61822ms to close"。
问题分析
经过深入调查,发现问题主要源于以下几个方面:
-
健康检查阻塞:在 Broker 关闭过程中,系统会执行健康检查操作。在某些情况下,healthcheckAsync 调用可能需要长达 30 秒才能完成,这会阻塞 WebServer 的关闭过程。
-
资源清理延迟:测试环境中的资源清理可能存在延迟,特别是在分布式环境下,元数据的同步和清理需要额外时间。
-
测试环境因素:在 CI/CD 环境中运行测试时,资源限制可能导致操作执行时间延长。
解决方案
针对上述问题,社区提出了以下改进措施:
-
优化健康检查机制:调整健康检查的超时设置,避免在关闭过程中因健康检查而导致的长时间阻塞。
-
改进测试清理逻辑:重构测试清理流程,确保资源释放顺序合理,减少相互依赖导致的等待时间。
-
增强测试稳定性:为测试添加更合理的超时控制和重试机制,提高在复杂环境下的稳定性。
实施效果
通过上述改进,测试的稳定性得到了显著提升。后续的测试运行显示,Broker 关闭时间已恢复到合理范围内,测试失败率大幅降低。
经验总结
这个案例提醒我们,在分布式系统的测试中,特别是涉及资源清理的场景,需要考虑以下几个方面:
- 异步操作的超时控制
- 资源释放的顺序和依赖关系
- 测试环境的特殊性
通过系统性地分析问题根源并实施针对性改进,可以有效提升测试的稳定性和可靠性,为项目的持续集成和交付提供坚实保障。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00