AFL++ 在 macOS 上编译时遇到的 dynamic_lookup 问题解析
问题背景
在使用 AFL++ 的 afl-clang-fast++ 编译器工具链在 macOS 系统上编译基于 LLVMFuzzerTestOneInput 的模糊测试工具时,开发者可能会遇到一个奇怪的编译错误。当尝试使用 -fsanitize=fuzzer 选项进行编译时,编译器会报告找不到 dynamic_lookup 文件或目录的错误。
错误现象
具体错误表现为:
clang++: error: no such file or directory: 'dynamic_lookup'
这个错误发生在使用 Apple 提供的 clang 编译器(如 Apple clang 15.0.0)时,特别是在 macOS 系统上。错误会阻止正常的编译过程,导致无法生成可执行的模糊测试工具。
问题根源
经过分析,这个问题源于 AFL++ 源代码中对 macOS 链接器标志的特殊处理方式。在 afl-cc.c 文件中,当检测到在 macOS 环境下编译时,AFL++ 会尝试添加两个独立的链接器参数:
-Wl,-undefineddynamic_lookup
然而,Apple 的 clang 编译器期望这些参数应该作为一个整体传递,即 -Wl,-undefined,dynamic_lookup。当参数被分开传递时,编译器会将第二个参数 dynamic_lookup 误解为一个文件名,而不是链接器选项的一部分,从而导致上述错误。
解决方案
解决这个问题的方案相对简单:将分开传递的两个链接器参数合并为一个参数。具体修改如下:
// 修改前
insert_param(aflcc, "-Wl,-undefined");
insert_param(aflcc, "dynamic_lookup");
// 修改后
insert_param(aflcc, "-Wl,-undefined,dynamic_lookup");
这个修改确保了链接器选项被正确地作为一个整体传递给编译器,避免了参数被误解为文件名的情况。
技术细节
-Wl,-undefined,dynamic_lookup 是 macOS 链接器的一个特殊选项,它告诉链接器在遇到未定义的符号时不要立即报错,而是推迟到运行时再解析。这在动态库加载和插件系统中特别有用,也是 AFL++ 在 macOS 上正常工作所需的设置。
验证结果
应用此修改后,编译过程能够顺利完成:
afl-cc++4.21a by Michal Zalewski, Laszlo Szekeres, Marc Heuse - mode: LLVM-PCGUARD
[+] Found '-fsanitize=fuzzer', replacing with libAFLDriver.a
SanitizerCoveragePCGUARD++4.21a
[+] Instrumented 1 locations with no collisions (non-hardened mode) of which are 0 handled and 0 unhandled selects.
兼容性考虑
虽然这个修改解决了在特定版本的 Apple clang 上出现的问题,但考虑到不同版本的编译器可能对参数格式有不同的要求,建议在更广泛的测试环境中验证这一修改的兼容性。特别是对于较旧版本的 macOS 和 clang 编译器,确保这种参数传递方式同样有效。
总结
这个问题的解决展示了在跨平台开发中处理不同编译器行为差异的重要性。通过将链接器参数合并传递,我们确保了 AFL++ 在 macOS 系统上的兼容性,使得模糊测试工具能够顺利编译和运行。对于使用 AFL++ 进行安全测试的开发者来说,这个修改可以避免在 macOS 环境下的编译障碍,提高开发效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00