CogVideo项目GPU推理优化实践指南
2025-05-21 12:41:48作者:韦蓉瑛
问题背景
在使用CogVideo进行视频生成推理时,用户遇到了一个典型的性能问题:在配备A800 80G显存的GPU上运行推理时,虽然显存容量理论上足够容纳整个模型(约20GB),但实际推理速度异常缓慢,单步推理耗时长达50分钟,且GPU显存利用率几乎为零。
问题分析
这种现象通常表明模型没有被正确加载到GPU上,而是运行在CPU上。通过监控工具可以看到,虽然GPU设备被识别,但计算负载完全由CPU承担,导致性能严重下降。
解决方案
方案一:显式指定设备
最直接的解决方案是显式地将整个pipeline移动到GPU设备上:
pipe.to("cuda")
这种方法简单有效,适用于显存充足的场景。对于A800 80G这样的高端显卡,完全有能力将整个模型加载到显存中,从而获得最佳推理性能。
方案二:调度器修正
有用户发现,在scheduling_ddim_cogvideox.py文件中存在一个潜在的性能瓶颈点:
prev_timestep = int(prev_timestep.to('cpu').item())
这行代码强制将张量移动到CPU进行计算,造成了不必要的设备间数据传输。修改为直接在GPU上操作可以显著提升性能:
prev_timestep = int(prev_timestep.item())
方案对比
-
全模型GPU加载:
- 优点:推理速度最快,延迟最低
- 缺点:需要足够大的显存
- 适用场景:高端GPU(如A800 80G)
-
CPU卸载技术:
- 优点:节省显存
- 缺点:增加推理延迟
- 适用场景:显存有限的设备
-
调度器优化:
- 优点:解决特定瓶颈
- 缺点:需要修改源代码
- 适用场景:所有设备
最佳实践建议
- 对于高端GPU用户,推荐使用全模型GPU加载方案,以获得最佳性能
- 定期检查模型各组件是否确实运行在预期设备上
- 使用
nvidia-smi等工具监控GPU利用率,确保计算负载正确分配 - 对于自定义修改,注意检查所有涉及设备转移的代码路径
性能优化效果
经过上述优化后,在A800 GPU上的单步推理时间从原来的50分钟大幅降低到约20秒,性能提升约150倍,GPU利用率也达到了预期水平。
总结
CogVideo作为大型视频生成模型,其性能优化需要特别注意设备分配策略。通过合理的GPU资源管理和针对性的代码优化,可以充分发挥硬件潜力,获得理想的推理性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869