推荐使用ActiveJob::Retry - 灵活的主动作业重试库
2024-06-16 20:35:58作者:农烁颖Land
在开发高可用性和容错性的应用程序时,我们经常遇到需要处理失败任务的情况。这就是ActiveJob::Retry库大显身手的地方。这个Alpha阶段的库正在积极发展中,为你的ActiveJob提供自动重试机制。
项目介绍
ActiveJob::Retry是一个简洁且强大的工具,它允许你在ActiveJob的工作类中轻松地引入重试策略。只需简单地include ActiveJob::Retry.new(strategy: something, **options),就可以在任务执行失败时进行重试,从而提高了任务完成的成功率。
项目技术分析
ActiveJob::Retry提供了三种内置策略:
- 常量延迟(Constant):在每次尝试之间保持恒定的时间间隔。
- 指数级延迟(Exponential):随着尝试次数的增加,延迟时间呈指数级增长。
- 可变延迟(Variable):在预定义的一系列延迟时间中随机选择。
此外,你还可以自定义回退策略,只需要创建一个响应should_retry?(attempt, exception)和retry_delay(attempt, exception)方法的对象,并将其传递给retry_with。
应用场景
对于那些可能因临时性问题(如网络错误、超时等)而失败的任务来说,这是一个理想的选择,例如:
- 处理Webhook
- 数据抓取或同步
- 邮件发送
- 第三方API调用
通过ActiveJob::Retry,你可以确保这些任务能够在后续尝试中成功执行,而不会因为一次失败就完全中断。
项目特点
- 灵活的重试策略:支持常量、指数和可变延迟,以及自定义回退策略。
- 回调功能:在每个重试之前可以运行回调,检查条件并决定是否继续重试。
- 兼容多种队列适配器:任何支持延迟调度的队列适配器都可以与之配合,但可能需要调整配置以防止适配器自身的自动重试。
- 控制异常处理:可以选择哪些异常类型应该被重试,哪些应视为致命错误,直接记录到错误服务。
常量选项配置
limit: 最大重试次数,默认为1。unlimited_retries: 是否无限次重试,需谨慎设置。delay: 两次尝试之间的延迟秒数,默认为0。retryable_exceptions: 只有当抛出的异常在这份白名单上时才会重试。fatal_exceptions: 黑名单中的异常将不被重试。
指数和可变选项与常量类似,但有自己的特定配置项。
使用方法示例
class ProcessWebhook < ActiveJob::Base
include ActiveJob::Retry.new(strategy: :constant,
limit: 3,
delay: 5.minutes,
retryable_exceptions: [TimeoutError, NetworkError])
# 或者,使用指数级延迟...
# include ActiveJob::Retry.new(strategy: :exponential, limit: 25)
# 或者,使用可变延迟...
# include ActiveJob::Retry.new(strategy: :variable, delays: [1.minute, 5.minutes, 10.minutes, 30.minutes])
def perform(webhook)
webhook.process!
end
end
总之,ActiveJob::Retry是一个强大的工具,它可以提高你的ActiveJob任务的可靠性和健壮性。尽管仍处于alpha阶段,但其丰富的特性已经使其成为处理可能失败任务的首选解决方案。赶快试试看吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873