JobRunr分布式任务调度中的并发控制问题解析
2025-06-30 16:03:46作者:尤辰城Agatha
背景介绍
JobRunr是一个优秀的分布式任务调度框架,但在实际生产环境中,开发者可能会遇到一些并发控制方面的挑战。本文将通过一个典型场景,分析如何正确使用JobRunr实现分布式环境下的定时任务调度。
问题现象
在支付系统等关键业务场景中,开发者通常会部署多个微服务实例(多个Pod)来提高系统可用性。某开发者在JobRunr中配置了一个每5分钟执行一次的定时任务,但观察到了以下异常现象:
- 有时任务确实按5分钟间隔执行
- 有时任务会在1分钟内多次执行
- 偶尔任务会完全停止执行
错误配置分析
开发者最初的实现混合使用了JobRunr和ShedLock两种技术:
@Transactional(isolation = Isolation.READ_COMMITTED)
@Override
@Job(name = "STATUS Scheduler")
@SchedulerLock(name = TASK_NAME)
public void run() {
// 业务逻辑
}
这种混合使用方式导致了调度行为的不可预测性。JobRunr本身已经提供了分布式环境下的任务调度能力,额外引入ShedLock反而会造成冲突。
JobRunr的分布式特性
JobRunr在设计之初就考虑了分布式场景,具有以下核心特性:
- 自动分布式协调:多个实例共享同一个存储后端时,JobRunr会自动协调任务执行
- 任务去重:相同ID的任务不会重复执行
- 故障转移:如果某个实例宕机,其他实例会自动接管其任务
正确配置方案
要实现分布式环境下每5分钟执行一次的任务,只需使用JobRunr的纯正方式:
@Job(name = "STATUS Scheduler")
public void run() {
// 业务逻辑
}
然后通过以下方式配置调度:
BackgroundJob.scheduleRecurrently(TASK_NAME, "0 */5 * * * *",
() -> statusScheduler.run());
最佳实践建议
- 避免混合调度框架:JobRunr已经具备分布式能力,不需要额外引入其他锁机制
- 合理设置任务ID:确保相同业务的任务使用相同ID,避免重复执行
- 监控任务执行:通过JobRunr Dashboard监控任务执行情况
- 合理设置重试策略:对于支付等关键业务,配置适当的失败重试机制
总结
JobRunr作为专为分布式环境设计的任务调度框架,本身就具备处理多实例并发的能力。开发者应充分理解框架的设计理念,避免引入不必要的额外组件,这样才能确保任务调度的可靠性和一致性。在支付等关键业务场景中,正确使用JobRunr可以显著提高系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210