QwenLM/Qwen项目中的GPTQ量化内存优化实践
2025-05-12 00:46:10作者:胡唯隽
在大型语言模型的应用中,模型量化是降低计算资源消耗的重要手段。QwenLM/Qwen作为开源项目,提供了基于AutoGPTQ工具的量化方案,但在实际使用中可能会遇到内存耗尽的问题,这需要开发者特别注意。
问题现象分析
当用户尝试对Lora微调并合并后的Qwen-14B模型进行GPTQ-4bit量化时,发现量化脚本run_gptq.py会耗尽系统内存。这种情况通常发生在模型规模较大时,特别是当使用14B参数规模的模型时更为明显。
技术原理探究
AutoGPTQ量化工具默认会将整个模型加载到CPU内存中进行处理。对于Qwen-14B这样的超大模型,其FP16格式的模型参数就需要约28GB内存空间,加上量化过程中需要的临时内存,很容易超出普通工作站的物理内存容量。
解决方案实践
针对这一问题,开发者可以采用以下优化策略:
-
分片加载技术:利用AutoGPTQ提供的模型分片加载功能,通过设置
model_basename参数指定分片模式。 -
显存直接加载:通过设置
trust_remote_code=True和use_safetensors=True参数,尝试将模型直接加载到GPU显存。 -
量化参数调优:适当调整
group_size等量化参数,可以在量化质量和内存消耗之间取得平衡。 -
硬件资源配置:对于超大模型量化,建议使用配备大容量内存(64GB以上)和高性能GPU的工作站。
最佳实践建议
在实际操作中,建议开发者:
- 对于超过7B参数的模型,优先考虑在专业服务器上执行量化操作
- 监控量化过程中的内存使用情况
- 考虑使用量化后的检查点功能,避免重复计算
- 对于生产环境,建议预先测试不同量化配置的性能表现
通过合理配置和优化,即使是Qwen-14B这样的大模型,也能成功完成GPTQ量化,为后续的推理应用提供高效支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.17 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255