GLM-4 多模态模型微调中的显存优化实践
2025-06-03 12:57:38作者:乔或婵
引言
在大型多模态模型GLM-4的微调过程中,显存管理是一个关键挑战。本文将深入分析GLM-4视觉模块微调时遇到的显存问题,并提供多种实用的优化方案。
显存问题分析
在单卡A6000(48G)上进行GLM-4视觉模块微调时,即使设置较小的batch size(1),仍然会出现显存不足的问题。错误信息显示PyTorch尝试分配1.22GiB显存时失败,而此时显存已接近满载状态。
这种现象主要由以下几个因素导致:
- 模型规模:GLM-4视觉模块参数量大,前向传播和反向传播都需要大量显存
- 注意力机制:视觉Transformer中的自注意力计算会消耗大量显存,特别是处理高分辨率图像时
- 中间变量:训练过程中产生的梯度、优化器状态等中间变量占用显存
优化方案实践
1. 参数高效微调(PEFT)
采用LoRA(Low-Rank Adaptation)技术可以显著减少可训练参数数量。在GLM-4视觉模块微调中,冻结视觉编码器(ViT)的主干网络,仅微调适配层,可以将显存需求降低到单卡28G左右。
2. 梯度累积技术
通过设置gradient_accumulation_steps参数,可以在较小的物理batch size下实现较大的有效batch size。需要注意的是:
- 设置过大的累积步数可能导致显存波动加剧
- 不同长度的token序列在梯度累积时需要注意归一化处理
- 建议从较小的累积步数(如2-4)开始测试
3. 分布式训练策略
对于全参数微调场景,可以考虑:
- 数据并行:在多卡上分配不同的数据批次
- 模型并行:将模型的不同层分配到不同设备
- ZeRO优化:特别是ZeRO-3阶段,可以优化优化器状态的存储
需要注意的是,当前GLM-4的Deepspeed Zero3支持仍在完善中,8卡A100全量微调仍可能面临显存挑战。
训练稳定性优化
在微调过程中观察到显存使用存在剧烈波动现象(约每30秒一次),这可能是由于:
- 周期性评估或检查点保存操作
- 动态显存分配策略不够优化
- 数据加载和处理的不均衡
建议采取以下措施提高稳定性:
- 调整
per_device_train_batch_size与gradient_accumulation_steps的平衡 - 优化数据加载流程,使用固定大小的内存池
- 监控显存使用模式,找出周期性峰值的原因
总结
GLM-4多模态模型的微调需要综合考虑模型结构、硬件资源和训练目标。通过参数高效微调、梯度累积和分布式训练等技术的合理组合,可以在有限硬件条件下实现有效的模型微调。未来随着代码的持续优化,预期会有更高效的微调方案出现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217