GLM-4 多模态模型微调中的显存优化实践
2025-06-03 16:01:46作者:乔或婵
引言
在大型多模态模型GLM-4的微调过程中,显存管理是一个关键挑战。本文将深入分析GLM-4视觉模块微调时遇到的显存问题,并提供多种实用的优化方案。
显存问题分析
在单卡A6000(48G)上进行GLM-4视觉模块微调时,即使设置较小的batch size(1),仍然会出现显存不足的问题。错误信息显示PyTorch尝试分配1.22GiB显存时失败,而此时显存已接近满载状态。
这种现象主要由以下几个因素导致:
- 模型规模:GLM-4视觉模块参数量大,前向传播和反向传播都需要大量显存
- 注意力机制:视觉Transformer中的自注意力计算会消耗大量显存,特别是处理高分辨率图像时
- 中间变量:训练过程中产生的梯度、优化器状态等中间变量占用显存
优化方案实践
1. 参数高效微调(PEFT)
采用LoRA(Low-Rank Adaptation)技术可以显著减少可训练参数数量。在GLM-4视觉模块微调中,冻结视觉编码器(ViT)的主干网络,仅微调适配层,可以将显存需求降低到单卡28G左右。
2. 梯度累积技术
通过设置gradient_accumulation_steps
参数,可以在较小的物理batch size下实现较大的有效batch size。需要注意的是:
- 设置过大的累积步数可能导致显存波动加剧
- 不同长度的token序列在梯度累积时需要注意归一化处理
- 建议从较小的累积步数(如2-4)开始测试
3. 分布式训练策略
对于全参数微调场景,可以考虑:
- 数据并行:在多卡上分配不同的数据批次
- 模型并行:将模型的不同层分配到不同设备
- ZeRO优化:特别是ZeRO-3阶段,可以优化优化器状态的存储
需要注意的是,当前GLM-4的Deepspeed Zero3支持仍在完善中,8卡A100全量微调仍可能面临显存挑战。
训练稳定性优化
在微调过程中观察到显存使用存在剧烈波动现象(约每30秒一次),这可能是由于:
- 周期性评估或检查点保存操作
- 动态显存分配策略不够优化
- 数据加载和处理的不均衡
建议采取以下措施提高稳定性:
- 调整
per_device_train_batch_size
与gradient_accumulation_steps
的平衡 - 优化数据加载流程,使用固定大小的内存池
- 监控显存使用模式,找出周期性峰值的原因
总结
GLM-4多模态模型的微调需要综合考虑模型结构、硬件资源和训练目标。通过参数高效微调、梯度累积和分布式训练等技术的合理组合,可以在有限硬件条件下实现有效的模型微调。未来随着代码的持续优化,预期会有更高效的微调方案出现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5