skorch 1.1.0 版本发布:机器学习与PyTorch的深度整合新进展
skorch 是一个将 PyTorch 与 scikit-learn 无缝衔接的 Python 库,它让开发者能够以 scikit-learn 熟悉的 API 风格来使用 PyTorch 的强大深度学习功能。这个项目特别适合那些希望在现有机器学习工作流中集成神经网络,但又不想完全脱离 scikit-learn 生态系统的开发者。
核心更新内容
1. 全面支持 scikit-learn 1.6.0
skorch 1.1.0 最重要的改进是全面适配了 scikit-learn 1.6.0 版本。所有神经网络类现在都继承自 scikit-learn 的 BaseEstimator 基类,分类模型额外继承 ClassifierMixin,回归模型继承 RegressorMixin。这一改变确保了 skorch 能够与最新版本的 scikit-learn 完美兼容,让开发者可以放心地在生产环境中使用。
这种继承关系的调整意味着:
- 更一致的 API 设计,符合 scikit-learn 的使用习惯
- 更好的集成能力,可以无缝接入 scikit-learn 的管道(Pipeline)和网格搜索(GridSearch)
- 更规范的机器学习接口实现
2. 学习率调度器功能增强
新版本对学习率调度器功能进行了多项改进:
-
ReduceLROnPlateau 调度器的增强:
- 现在会自动记录学习率变化到网络历史中(默认键为'event_lr')
- 支持按批次(batch)而不仅是按周期(epoch)进行学习率调整
- 这对于需要更细粒度控制学习过程的场景特别有用
-
模拟功能改进:
- simulate() 方法现在支持添加步骤参数
- 使得模拟 ReduceLROnPlateau 等需要基于指标调整学习率的策略成为可能
-
新增示例笔记本:
- 专门展示了如何在 skorch 中使用各种学习率调度器
- 包含实用代码示例和最佳实践建议
3. 二进制分类器与 torch.compile 的兼容性修复
修复了 NeuralNetBinaryClassifier 与 PyTorch 2.0 引入的 torch.compile 功能的兼容性问题。这一改进使得:
- 二进制分类模型现在可以利用 PyTorch 的图编译优化
- 获得潜在的训练速度提升
- 保持与最新 PyTorch 版本的兼容性
4. 其他改进与优化
- 移除了已弃用的 skorch.callbacks.scoring.cache_net_infer 功能
- 代码清理和内部优化
- 文档更新和完善
技术影响与使用建议
skorch 1.1.0 的这些改进特别适合以下场景:
-
生产环境部署:由于与 scikit-learn 1.6.0 的完全兼容,现在可以更安全地将 skorch 模型部署到生产环境。
-
学习率策略实验:新增的学习率调度器功能和示例为超参数调优提供了更多可能性,特别是在训练复杂神经网络时。
-
性能优化:二进制分类器与 torch.compile 的兼容性修复使得模型训练可以尝试 PyTorch 的最新性能优化特性。
对于现有用户,升级到 1.1.0 版本通常是安全的,但需要注意:
- 如果使用了已移除的 cache_net_infer 功能,需要调整代码
- 新的学习率记录功能可能会略微增加内存使用
- 建议在测试环境中先验证新版本的兼容性
结语
skorch 1.1.0 虽然是一个小版本更新,但在兼容性和功能完善方面做出了重要贡献。特别是对 scikit-learn 最新版本的支持,确保了项目能够持续满足现代机器学习工作流的需求。学习率调度器相关功能的增强则为模型训练过程提供了更精细的控制能力。这些改进共同巩固了 skorch 作为连接 PyTorch 和 scikit-learn 生态系统的桥梁地位。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00