Ceres-Solver 中的可微分网格插值技术解析
2025-06-16 04:12:20作者:彭桢灵Jeremy
背景介绍
在数值优化和计算机视觉领域,Ceres-Solver 是一个广泛使用的非线性最小二乘问题求解库。它提供了强大的自动微分功能,使得用户可以方便地定义各种优化问题。然而,在处理网格插值时,Ceres-Solver 目前存在一个限制:网格值本身不能作为可微分的参数参与优化。
问题本质
当前 Ceres-Solver 的网格插值实现(如 CubicInterpolator)在内部会将所有网格值强制转换为 double 类型,这意味着:
- 网格值被视为固定常量,无法作为优化变量
- 只能对查询点进行微分,不能对网格值本身进行微分
- 限制了在某些应用场景下的灵活性
技术影响
这种限制在以下场景中会带来问题:
- 当需要优化网格本身的值时(如校正网格)
- 在机器学习模型中,网格作为可学习参数时
- 需要端到端微分的工作流程中
相比之下,PyTorch 等深度学习框架可以轻松实现这种功能,因为它们的张量操作天然支持全微分。
解决方案分析
要实现网格值的可微分性,需要对 Ceres-Solver 的插值模块进行以下改进:
- 修改 Grid1D 和 CubicInterpolator 模板类,使其支持模板化的网格值类型
- 确保所有内部计算都保持模板类型,避免不必要的类型转换
- 维护现有的性能特性,不引入额外计算开销
应用场景示例
考虑一个二维仿射变换与畸变校正的组合问题:
struct Affine2DWithDistortion {
template <typename T>
bool operator()(const T* theta, const T* t, const T* distortion_values, T* residuals) const {
// 计算变换后的坐标
const T q_0 = cos(theta[0]) * x[0] - sin(theta[0]) * x[1] + t[0];
const T q_1 = sin(theta[0]) * x[0] + cos(theta[0]) * x[1] + t[1];
// 计算径向距离平方
const T r2 = q_0 * q_0 + q_1 * q_1;
// 创建可微分网格插值器
ceres::Grid1D<T, 1> grid(distortion_values, 0, 100);
ceres::CubicInterpolator<ceres::Grid1D<T, 1>> compute_distortion(grid);
// 评估畸变值
T f;
compute_distortion.Evaluate(r2, &f);
// 计算残差
residuals[0] = y[0] - f * q_0;
residuals[1] = y[1] - f * q_1;
return true;
}
};
在这种实现中,distortion_values 可以作为优化变量参与自动微分过程,使得整个系统能够端到端地优化畸变校正参数。
技术实现考量
实现这种功能需要考虑以下技术细节:
- 模板特化:需要确保所有内部计算都正确处理模板类型
- 性能优化:保持现有实现的效率,避免因支持微分而引入额外开销
- API兼容性:确保新功能与现有API保持兼容
- 边界条件处理:正确处理网格边界处的插值行为
未来展望
随着可微分编程的普及,支持网格值的微分将成为科学计算库的重要功能。这种改进将使 Ceres-Solver 能够:
- 更好地与深度学习框架集成
- 支持更复杂的优化问题建模
- 在相机标定、图像处理等领域提供更灵活的解决方案
总结
Ceres-Solver 中实现可微分网格插值是提升库功能完整性的重要一步。这将扩展其在各类优化问题中的应用范围,特别是在需要同时优化参数和网格值的场景中。通过合理的模板设计和性能优化,可以在不牺牲效率的情况下实现这一功能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210