DeepMD-kit中DPA2模型测试时的张量维度不匹配问题分析
2025-07-10 09:42:50作者:咎岭娴Homer
问题背景
在使用DeepMD-kit的PyTorch后端进行DPA2描述符模型测试时,研究人员发现了一个与验证数据集大小相关的张量维度不匹配问题。具体表现为:当使用合并后的验证数据集(包含7290帧数据,来自C2O29H4_1124和C2O3H4_6166两个来源)进行测试时,会出现"RuntimeError: The size of tensor a (17) must match the size of tensor b (25) at non-singleton dimension 1"的错误。
问题复现条件
该问题在以下环境中可复现:
- DeepMD-kit版本:v3.0.0a1.dev81+g23f67a13
- PyTorch版本:2.0.0
- CUDA版本:cu117
- 使用DPA2描述符训练的模型(500k步训练)
- 合并的验证数据集(包含不同分子结构的多个数据集)
问题现象分析
当测试命令为:
dp --pt test -m model.ckpt.pt -s /path/to/merged_validation_data/
会出现张量维度不匹配错误。但通过添加-n参数限制测试帧数(如-n 10)后,测试可以正常完成。
进一步测试发现:
- 使用单个验证数据集时,问题同样存在
- 通过限制测试帧数可以规避问题
- 该问题与批次大小设置(DP_INFER_BATCH_SIZE)无关
根本原因定位
经过深入排查,发现问题与PyTorch的JIT脚本编译功能相关。具体表现为:
- 当启用torch.jit.script对模型进行编译时,会出现张量维度不匹配错误
- 注释掉torch.jit.script相关代码后,测试可以正常完成
- 这表明问题可能源于PyTorch JIT编译器在处理特定模型结构时的行为异常
技术影响
该问题对使用DeepMD-kit的研究人员可能造成以下影响:
- 无法对大规模验证数据集进行完整测试
- 需要手动限制测试帧数来规避问题
- 影响模型评估的完整性和准确性
解决方案
目前推荐的临时解决方案包括:
- 使用-n参数限制测试帧数
- 在代码中临时禁用torch.jit.script功能(需自行编译修改版)
长期来看,需要等待PyTorch官方修复JIT编译器相关的问题,特别是在处理类似DPA2这样的复杂模型结构时的稳定性问题。
技术建议
对于遇到类似问题的研究人员,建议:
- 首先确认是否使用了合并的验证数据集
- 尝试使用较小的测试批次或限制测试帧数
- 关注PyTorch版本更新,特别是JIT编译器相关的改进
- 对于关键研究,考虑使用非JIT编译的模型版本进行测试
这个问题提醒我们,在使用深度学习框架的高级功能时,需要特别注意其对模型行为的潜在影响,特别是在处理复杂模型结构和非标准数据组织方式时。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399