推荐文章:Shepherd - 您的语言模型生成批评家
2024-05-31 10:54:22作者:明树来
1. 项目介绍
在自然语言处理的领域中,我们常常依赖于预训练的大型语言模型来生成文本,然而它们并非完美无缺。Shepherd 是一个创新性的开源项目,旨在为语言模型生成提供专业且精细的批评和改进建议。这个工具超越了普通未调优模型的能力,能够识别多样化的错误,并提出修复建议,确保生成的内容更加准确、连贯。

2. 项目技术分析
Shepherd 基于广泛的人工标注反馈数据构建,涵盖六种特定的错误类型,如算术错误、逻辑连贯性问题、一致性错误等。这些数据经过精心设计的分类系统整理,使得模型可以针对每个错误类型进行针对性的学习或评估。通过这种深度定制的方法,Shepherd 能够更准确地检测并纠正模型生成的文本中的问题。
3. 项目及技术应用场景
Shepherd 可广泛应用于多个场景:
- 教育:自动检测学生的数学解答中的计算错误,提供改进指导。
- 内容生成:改善AI自动生成的新闻摘要或故事,保证其逻辑性和准确性。
- 问答系统:提高智能客服回答问题的质量,确保信息的正确性和一致性。
- 科研写作:辅助检查论文摘要的结构和逻辑,减少常见错误。
4. 项目特点
- 精细化错误分类:Shepherd 的错误分类系统详细且全面,涵盖多种常见的语言模型生成错误。
- 人工标注:利用大量专业的人工标注数据,提高了模型的批判能力和建议质量。
- 易于集成:项目提供了原始数据和处理脚本,方便开发者将 Shepherd 集成到自己的系统中。
- 开放源代码:遵循 CC-BY-NC 4.0 许可协议,鼓励研究者和开发者的共同参与和改进。
为了进一步了解 Shepherd 并将其应用到您的项目中,请参考以下引用格式:
@misc{wang2023shepherd,
title={Shepherd: A Critic for Language Model Generation},
author={Tianlu Wang and Ping Yu and Xiaoqing Ellen Tan and Sean O'Brien and Ramakanth Pasunuru and Jane Dwivedi-Yu and Olga Golovneva and Luke Zettlemoyer and Maryam Fazel-Zarandi and Asli Celikyilmaz},
year={2023},
eprint={2308.04592},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
总之,Shepherd 是一个强大的工具,它不仅可以帮助提升您的语言模型的表现,而且还能引导您深入理解自然语言处理中的挑战。无论是研究人员还是开发者,都值得尝试并利用 Shepherd 提升您的项目水平。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869