Torchchat项目在MPS设备上运行Executorch模型的问题分析
2025-06-20 04:47:24作者:魏侃纯Zoe
问题背景
在Torchchat项目中,当尝试在配备Apple Silicon芯片的Mac设备上运行stories15M模型时,系统默认会使用Metal Performance Shaders(MPS)作为计算后端。然而,在执行过程中出现了Executorch内部检查失败的问题,导致程序崩溃。
错误现象
用户在执行模型导出和生成命令时,遇到了以下关键错误信息:
- 嵌入层索引越界错误:
indices_ptr[0] 144115196571280365 >= weight.size(0) 32000
- Executorch内核调用失败:
KernelCall failed at instruction 0:0 in operator aten::embedding.out
- 最终抛出运行时错误:
method->execute() failed with error 0x12
根本原因
经过分析,这个问题源于Executorch在MPS后端上的兼容性问题。具体表现为:
- 当使用MPS设备时,嵌入层(embedding)操作无法正确处理输入token的索引值
- 索引值异常增大,远超过了词表大小(32000),导致越界访问
- Executorch的运行时检查机制捕获到这个非法操作并终止了程序执行
解决方案
针对这个问题,项目团队提出了以下解决方案:
- 强制指定使用CPU设备运行模型,绕过MPS后端的兼容性问题
- 通过添加
--device cpu
参数,可以确保模型在CPU上正常运行 - 这个解决方案虽然简单有效,但可能会牺牲一些在Apple Silicon设备上的性能优势
技术启示
这个案例为我们提供了几个重要的技术启示:
- 跨平台兼容性:在支持多种硬件后端时,必须充分考虑各后端的特性和限制
- 错误处理机制:完善的错误检查和验证机制可以及早发现问题,避免更严重的后果
- 性能与兼容性的权衡:有时为了确保功能正常,需要在性能上做出妥协
未来改进方向
虽然当前问题已有临时解决方案,但从长远来看,可以考虑以下改进:
- 深入分析MPS后端在Executorch中的具体兼容性问题
- 与PyTorch团队合作,完善MPS后端的支持
- 为不同硬件后端提供自动检测和回退机制,提升用户体验
这个问题展示了深度学习框架在跨平台支持过程中可能遇到的挑战,也为开发者提供了宝贵的实践经验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~051CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3