ONNX项目应对ONNX Runtime 1.20版本兼容性问题的技术方案
ONNX Runtime 1.20版本发布后,由于其对Python版本支持的调整,导致ONNX项目中的部分CI/CD流水线出现阻塞问题。本文将详细介绍这一兼容性问题的背景、影响范围以及ONNX项目团队采取的解决方案。
问题背景
ONNX Runtime作为ONNX模型的高性能推理引擎,在1.20版本中做出了一个重要变更:停止对Python 3.8和Python 3.9的支持。这一决策是为了与NumPy项目的Python版本支持策略保持一致。对于仍需要使用Python 3.8和3.9的用户,官方建议继续使用1.19.2及更早版本的ONNX Runtime。
影响分析
这一变更直接影响了ONNX项目的持续集成环境,特别是那些基于Python 3.8和3.9的测试流水线。由于ONNX项目需要确保与不同版本ONNX Runtime的兼容性,这种上游依赖的版本策略变更必须得到及时响应和处理。
解决方案
ONNX项目团队采取了以下技术措施来解决这一问题:
-
版本锁定策略:在CI/CD配置中明确指定使用ONNX Runtime 1.19.2版本,确保测试环境稳定。
-
Python版本支持调整:考虑逐步减少对Python 3.8的支持,特别是在ONNX 1.18版本中。这一决策基于对用户群体和使用场景的评估,以及对维护成本的考量。
-
持续集成环境优化:重新配置测试矩阵,确保不同Python版本与对应ONNX Runtime版本的兼容性组合得到充分测试。
技术建议
对于使用ONNX生态系统的开发者,我们建议:
-
如果项目仍在使用Python 3.8或3.9,应明确指定使用ONNX Runtime 1.19.2或更早版本。
-
考虑升级Python环境到3.10或更高版本,以获得更好的兼容性和性能支持。
-
在依赖管理文件中明确指定ONNX Runtime的版本范围,避免自动升级到不兼容的版本。
未来规划
ONNX项目将持续关注上游依赖的版本策略变化,并建立更完善的兼容性测试机制。同时,项目团队将评估对较旧Python版本的支持策略,在确保稳定性的前提下,逐步推进技术栈的现代化。
通过这次事件,ONNX项目也验证了其应对上游依赖变更的快速响应能力,为后续类似问题的处理积累了宝贵经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00