ONNX项目应对ONNX Runtime 1.20版本兼容性问题的技术方案
ONNX Runtime 1.20版本发布后,由于其对Python版本支持的调整,导致ONNX项目中的部分CI/CD流水线出现阻塞问题。本文将详细介绍这一兼容性问题的背景、影响范围以及ONNX项目团队采取的解决方案。
问题背景
ONNX Runtime作为ONNX模型的高性能推理引擎,在1.20版本中做出了一个重要变更:停止对Python 3.8和Python 3.9的支持。这一决策是为了与NumPy项目的Python版本支持策略保持一致。对于仍需要使用Python 3.8和3.9的用户,官方建议继续使用1.19.2及更早版本的ONNX Runtime。
影响分析
这一变更直接影响了ONNX项目的持续集成环境,特别是那些基于Python 3.8和3.9的测试流水线。由于ONNX项目需要确保与不同版本ONNX Runtime的兼容性,这种上游依赖的版本策略变更必须得到及时响应和处理。
解决方案
ONNX项目团队采取了以下技术措施来解决这一问题:
-
版本锁定策略:在CI/CD配置中明确指定使用ONNX Runtime 1.19.2版本,确保测试环境稳定。
-
Python版本支持调整:考虑逐步减少对Python 3.8的支持,特别是在ONNX 1.18版本中。这一决策基于对用户群体和使用场景的评估,以及对维护成本的考量。
-
持续集成环境优化:重新配置测试矩阵,确保不同Python版本与对应ONNX Runtime版本的兼容性组合得到充分测试。
技术建议
对于使用ONNX生态系统的开发者,我们建议:
-
如果项目仍在使用Python 3.8或3.9,应明确指定使用ONNX Runtime 1.19.2或更早版本。
-
考虑升级Python环境到3.10或更高版本,以获得更好的兼容性和性能支持。
-
在依赖管理文件中明确指定ONNX Runtime的版本范围,避免自动升级到不兼容的版本。
未来规划
ONNX项目将持续关注上游依赖的版本策略变化,并建立更完善的兼容性测试机制。同时,项目团队将评估对较旧Python版本的支持策略,在确保稳定性的前提下,逐步推进技术栈的现代化。
通过这次事件,ONNX项目也验证了其应对上游依赖变更的快速响应能力,为后续类似问题的处理积累了宝贵经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00