Autograd-from-scratch 开源项目教程
2025-04-19 04:34:00作者:牧宁李
1. 项目介绍
Autograd-from-scratch 是一个由社区贡献的开源教育项目,旨在提供一个从零开始的自动微分框架。该项目模仿了流行的深度学习框架如 PyTorch 的核心功能,并以易读性和教育性为设计重点。它实现了一个简单的自动微分引擎,以及一系列深度学习模型层和优化器。项目结构清晰,包含了单元测试和文档,非常适合作为学习深度学习和自动微分原理的起点。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已经安装了 Python。然后,创建一个虚拟环境并安装所需的依赖:
pip install -r requirements.txt
安装框架
通过以下命令安装 Autograd-from-scratch:
pip install neuralforge
简单示例
下面的代码展示了如何使用 Autograd-from-scratch 来创建和操作张量:
import neuralforge as forge
# 创建随机张量
x = forge.randn((8, 4, 5))
# 创建需要梯度的随机张量
w = forge.randn((8, 5, 4), requires_grad=True)
b = forge.randint((4,), requires_grad=True)
# 进行计算
out = x @ w
out += b
# 反向传播计算梯度
out.backward()
# 打印梯度
print(w.grad)
print(b.grad)
复杂示例
以下是一个使用 Autograd-from-scratch 实现的简单变换器模型的例子:
import neuralforge as forge
import neuralforge.nn as nn
class Transformer(nn.Module):
def __init__(self, vocab_size, hidden_size, n_timesteps, n_heads, p):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.pos_embed = nn.PositionalEmbedding(n_timesteps, hidden_size)
self.b1 = nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_prob=p)
self.b2 = nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_prob=p)
self.ln = nn.LayerNorm(hidden_size)
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
z = self.embed(x) + self.pos_embed(x)
z = self.b1(z)
z = self.b2(z)
z = self.ln(z)
z = self.linear(z)
return z
# 假设加载了文本数据并创建了一个变换器实例
# model = Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p)
# 定义损失函数和优化器
# loss_func = nn.CrossEntropyLoss()
# optimizer = optim.Adam(model.parameters(), lr=0.01, reg=0)
# 训练循环
# for _ in range(n_iters):
# x, y = get_batch(test_data, n_timesteps, batch_size)
# z = model.forward(x)
# loss = loss_func(z, y)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
3. 应用案例和最佳实践
本项目可以作为学习自动微分和深度学习原理的基础。以下是一些使用该框架的最佳实践:
- 理解和测试: 在尝试构建复杂模型之前,先理解框架的工作原理,并运行单元测试来确保框架的稳定性和正确性。
- 自定义模型: 利用框架提供的层和函数,你可以构建自己的模型,模仿 PyTorch 等框架的用法。
- 文档和测试: 为你的代码编写文档,并编写单元测试,以提高代码的可维护性和可读性。
4. 典型生态项目
Autograd-from-scratch 作为教育性项目,可以与以下类型的项目配合使用:
- 教育课程: 在大学或在线课程中使用该框架来教授深度学习和自动微分。
- 研究项目: 作为研究的基础,帮助研究人员快速原型化新想法。
- 社区贡献: 鼓励社区成员贡献代码,提高框架的功能和稳定性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896