Autograd-from-scratch 开源项目教程
2025-04-19 12:11:42作者:牧宁李
1. 项目介绍
Autograd-from-scratch 是一个由社区贡献的开源教育项目,旨在提供一个从零开始的自动微分框架。该项目模仿了流行的深度学习框架如 PyTorch 的核心功能,并以易读性和教育性为设计重点。它实现了一个简单的自动微分引擎,以及一系列深度学习模型层和优化器。项目结构清晰,包含了单元测试和文档,非常适合作为学习深度学习和自动微分原理的起点。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已经安装了 Python。然后,创建一个虚拟环境并安装所需的依赖:
pip install -r requirements.txt
安装框架
通过以下命令安装 Autograd-from-scratch:
pip install neuralforge
简单示例
下面的代码展示了如何使用 Autograd-from-scratch 来创建和操作张量:
import neuralforge as forge
# 创建随机张量
x = forge.randn((8, 4, 5))
# 创建需要梯度的随机张量
w = forge.randn((8, 5, 4), requires_grad=True)
b = forge.randint((4,), requires_grad=True)
# 进行计算
out = x @ w
out += b
# 反向传播计算梯度
out.backward()
# 打印梯度
print(w.grad)
print(b.grad)
复杂示例
以下是一个使用 Autograd-from-scratch 实现的简单变换器模型的例子:
import neuralforge as forge
import neuralforge.nn as nn
class Transformer(nn.Module):
def __init__(self, vocab_size, hidden_size, n_timesteps, n_heads, p):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.pos_embed = nn.PositionalEmbedding(n_timesteps, hidden_size)
self.b1 = nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_prob=p)
self.b2 = nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_prob=p)
self.ln = nn.LayerNorm(hidden_size)
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
z = self.embed(x) + self.pos_embed(x)
z = self.b1(z)
z = self.b2(z)
z = self.ln(z)
z = self.linear(z)
return z
# 假设加载了文本数据并创建了一个变换器实例
# model = Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p)
# 定义损失函数和优化器
# loss_func = nn.CrossEntropyLoss()
# optimizer = optim.Adam(model.parameters(), lr=0.01, reg=0)
# 训练循环
# for _ in range(n_iters):
# x, y = get_batch(test_data, n_timesteps, batch_size)
# z = model.forward(x)
# loss = loss_func(z, y)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
3. 应用案例和最佳实践
本项目可以作为学习自动微分和深度学习原理的基础。以下是一些使用该框架的最佳实践:
- 理解和测试: 在尝试构建复杂模型之前,先理解框架的工作原理,并运行单元测试来确保框架的稳定性和正确性。
- 自定义模型: 利用框架提供的层和函数,你可以构建自己的模型,模仿 PyTorch 等框架的用法。
- 文档和测试: 为你的代码编写文档,并编写单元测试,以提高代码的可维护性和可读性。
4. 典型生态项目
Autograd-from-scratch 作为教育性项目,可以与以下类型的项目配合使用:
- 教育课程: 在大学或在线课程中使用该框架来教授深度学习和自动微分。
- 研究项目: 作为研究的基础,帮助研究人员快速原型化新想法。
- 社区贡献: 鼓励社区成员贡献代码,提高框架的功能和稳定性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878