BiBloSA 项目使用教程
2024-09-26 18:13:59作者:姚月梅Lane
1. 项目目录结构及介绍
BiBloSA 项目的目录结构如下:
BiBloSA/
├── context_fusion/
│ ├── interface.py
│ └── ...
├── exp_SC/
├── exp_SICK/
├── exp_SNLI/
├── exp_SQuAD_sim/
├── exp_SST/
├── exp_TREC/
├── LICENSE
├── README.md
└── ...
目录结构介绍
- context_fusion/: 包含序列编码层的通用接口,包括 Bi-directional Block Self-Attention Network (Bi-BloSAN)、Directional Self-Attention Network (DiSAN) 等。
- exp_SC/, exp_SICK/, exp_SNLI/, exp_SQuAD_sim/, exp_SST/, exp_TREC/: 这些目录包含了不同基准数据集的实验代码。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍和使用说明。
2. 项目启动文件介绍
BiBloSA 项目没有明确的“启动文件”,因为它的主要功能是通过实验代码来验证和使用不同的序列编码模型。每个实验目录(如 exp_SNLI/)中都有一个主脚本(如 snli_main.py),用于启动实验。
示例启动命令
python exp_SNLI/snli_main.py --network_type exp_context_fusion --log_period 100 --eval_period 500 --gpu 0 --gpu_mem 0.5 --save_model True --mode train --num_steps 10000 --train_batch_size 32 --test_batch_size 64 --word_embedding_length 300 --glove_corpus 840B --dropout 0.5 --wd 0.0001 --hidden_units_num 300 --optimizer adam --learning_rate 0.001 --context_fusion_method block --block_len 5
3. 项目配置文件介绍
BiBloSA 项目的配置主要通过命令行参数进行设置。每个实验目录中的主脚本(如 snli_main.py)会解析这些参数并进行相应的配置。
常用配置参数
--network_type: 使用的网络类型,如exp_context_fusion。--log_period: 保存日志的周期。--eval_period: 评估模型的周期。--gpu: 使用的 GPU 索引。--gpu_mem: GPU 内存分配比例。--save_model: 是否保存模型。--mode: 运行模式,如train或test。--load_model: 是否加载已保存的模型。--model_dir_suffix: 模型目录的后缀。--num_steps: 训练步数。--train_batch_size: 训练批次大小。--test_batch_size: 测试批次大小。--word_embedding_length: 词嵌入长度。--glove_corpus: GloVe 语料库名称。--dropout: Dropout 保持概率。--wd: L2 正则化衰减因子。--hidden_units_num: 隐藏单元数量。--optimizer: 优化器类型,如adam。--learning_rate: 初始学习率。--context_fusion_method: 上下文融合方法,如block。--block_len: 块长度。
通过这些配置参数,用户可以灵活地调整模型的训练和评估过程。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492