MediaPipe项目构建Android AAR包的技术实践
2025-05-05 17:43:31作者:霍妲思
在Android平台上使用MediaPipe进行机器学习模型部署时,开发者经常需要将自定义的计算图(Graph)打包成AAR(Android Archive)格式。本文针对MediaPipe 0.10.21版本中构建AAR包的方法变更进行技术解析,并提供完整的解决方案。
背景与问题
MediaPipe项目在近期版本更新中进行了构建系统的重构,原先用于构建AAR的mediapipe_aar.bzl脚本被合并到了mediapipe_tasks_aar.bzl中。这一变更导致开发者无法直接使用原有的mediapipe_aar()函数来构建自定义计算图的AAR包。
解决方案
目前有两种可行的技术方案:
方案一:使用新的构建函数
MediaPipe项目提供了新的构建函数mediapipe_build_aar_with_jni,该函数位于mediapipe_tasks_aar.bzl中。使用示例如下:
load("//mediapipe/tasks/java/com/google/mediapipe/tasks:mediapipe_tasks_aar.bzl", "mediapipe_build_aar_with_jni")
mediapipe_build_aar_with_jni(
name = "custom_aar",
srcs = ["CustomCalculator.java"],
native_library = ":custom_jni_lib",
manifest = "AndroidManifest.xml",
proguard_spec = "proguard.pgcfg",
deps = [
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
],
)
方案二:恢复旧版构建脚本
考虑到兼容性问题,MediaPipe项目团队已临时恢复了mediapipe_aar.bzl脚本。开发者可以同步到特定提交来使用原有的构建方式。
技术实现细节
无论采用哪种方案,构建AAR包时都需要注意以下关键点:
- JNI库配置:必须正确配置native_library参数,指向对应的JNI库目标
- Android清单文件:需要提供完整的AndroidManifest.xml
- 混淆配置:建议提供Proguard规则文件以保证代码优化和混淆
- 依赖管理:确保包含所有必要的MediaPipe框架依赖
最佳实践建议
- 对于新项目,建议优先使用mediapipe_build_aar_with_jni函数
- 对于已有项目迁移,可以先采用恢复的mediapipe_aar.bzl进行过渡
- 构建前确保环境配置正确,包括:
- Android SDK和NDK版本兼容
- Bazel构建系统版本要求
- 必要的系统依赖安装
总结
MediaPipe项目在不断演进过程中,构建系统也在持续优化。开发者需要关注这些变更,及时调整自己的构建配置。本文介绍的两种方案都能有效解决AAR包构建问题,开发者可以根据项目实际情况选择最适合的方式。
随着MediaPipe生态的成熟,建议开发者逐步迁移到新的构建系统,以获得更好的维护性和新特性支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895