MediaPipe项目构建Android AAR包的技术实践
2025-05-05 17:43:31作者:霍妲思
在Android平台上使用MediaPipe进行机器学习模型部署时,开发者经常需要将自定义的计算图(Graph)打包成AAR(Android Archive)格式。本文针对MediaPipe 0.10.21版本中构建AAR包的方法变更进行技术解析,并提供完整的解决方案。
背景与问题
MediaPipe项目在近期版本更新中进行了构建系统的重构,原先用于构建AAR的mediapipe_aar.bzl脚本被合并到了mediapipe_tasks_aar.bzl中。这一变更导致开发者无法直接使用原有的mediapipe_aar()函数来构建自定义计算图的AAR包。
解决方案
目前有两种可行的技术方案:
方案一:使用新的构建函数
MediaPipe项目提供了新的构建函数mediapipe_build_aar_with_jni,该函数位于mediapipe_tasks_aar.bzl中。使用示例如下:
load("//mediapipe/tasks/java/com/google/mediapipe/tasks:mediapipe_tasks_aar.bzl", "mediapipe_build_aar_with_jni")
mediapipe_build_aar_with_jni(
name = "custom_aar",
srcs = ["CustomCalculator.java"],
native_library = ":custom_jni_lib",
manifest = "AndroidManifest.xml",
proguard_spec = "proguard.pgcfg",
deps = [
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
],
)
方案二:恢复旧版构建脚本
考虑到兼容性问题,MediaPipe项目团队已临时恢复了mediapipe_aar.bzl脚本。开发者可以同步到特定提交来使用原有的构建方式。
技术实现细节
无论采用哪种方案,构建AAR包时都需要注意以下关键点:
- JNI库配置:必须正确配置native_library参数,指向对应的JNI库目标
- Android清单文件:需要提供完整的AndroidManifest.xml
- 混淆配置:建议提供Proguard规则文件以保证代码优化和混淆
- 依赖管理:确保包含所有必要的MediaPipe框架依赖
最佳实践建议
- 对于新项目,建议优先使用mediapipe_build_aar_with_jni函数
- 对于已有项目迁移,可以先采用恢复的mediapipe_aar.bzl进行过渡
- 构建前确保环境配置正确,包括:
- Android SDK和NDK版本兼容
- Bazel构建系统版本要求
- 必要的系统依赖安装
总结
MediaPipe项目在不断演进过程中,构建系统也在持续优化。开发者需要关注这些变更,及时调整自己的构建配置。本文介绍的两种方案都能有效解决AAR包构建问题,开发者可以根据项目实际情况选择最适合的方式。
随着MediaPipe生态的成熟,建议开发者逐步迁移到新的构建系统,以获得更好的维护性和新特性支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
735
177
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
259
111
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.29 K
709
React Native鸿蒙化仓库
JavaScript
294
343
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1